BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30884163)

  • 1. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics.
    Guo J; Yu Y; Wang H; Zhang H; Zhang X; Zhao Y
    Small; 2019 Apr; 15(15):e1805162. PubMed ID: 30884163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin.
    Guo J; Yu Y; Zhang D; Zhang H; Zhao Y
    Research (Wash D C); 2021; 2021():7065907. PubMed ID: 33763650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastretchable E-Skin Based on Conductive Hydrogel Microfibers for Wearable Sensors.
    Wang J; Qi Y; Gui Y; Wang C; Wu Y; Yao J; Wang J
    Small; 2024 Mar; 20(9):e2305951. PubMed ID: 37817356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers.
    Agarwal M; Xing Q; Shim BS; Kotov N; Varahramyan K; Lvov Y
    Nanotechnology; 2009 May; 20(21):215602. PubMed ID: 19423933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Healing, Flexible and Smart 3D Hydrogel Electrolytes Based on Alginate/PEDOT:PSS for Supercapacitor Applications.
    Badawi NM; Bhatia M; Ramesh S; Ramesh K; Kuniyil M; Shaik MR; Khan M; Shaik B; Adil SF
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-flow-induced graphene coating microfibers from microfluidic spinning.
    Yu Y; Guo J; Zhang H; Wang X; Yang C; Zhao Y
    Innovation (Camb); 2022 Mar; 3(2):100209. PubMed ID: 35199079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels.
    Reynolds M; Stoy LM; Sun J; Opoku Amponsah PE; Li L; Soto M; Song S
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels.
    Feig VR; Tran H; Lee M; Liu K; Huang Z; Beker L; Mackanic DG; Bao Z
    Adv Mater; 2019 Sep; 31(39):e1902869. PubMed ID: 31414520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Conductive and Reusable Cellulose Hydrogels for Supercapacitor Applications.
    Badawi NM; Batoo KM; Subramaniam R; Kasi R; Hussain S; Imran A; Muthuramamoorthy M
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Healable Conductive Hydrogels with High Stretchability and Ultralow Hysteresis for Soft Electronics.
    Prameswati A; Nurmaulia Entifar SA; Han JW; Wibowo AF; Kim JH; Sembiring YSB; Park J; Lee J; Lee AY; Song MH; Kim S; Lim DC; Eom Y; Heo S; Moon MW; Kim MS; Kim YH
    ACS Appl Mater Interfaces; 2023 May; 15(20):24648-24657. PubMed ID: 37170066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens toward Wearable Conductive Textile Applications.
    Ding Y; Xu W; Wang W; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30014-30023. PubMed ID: 28806516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics.
    Kim S; Choi H; Son D; Shin M
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-Conductivity Polymer Hydrogels with Arbitrary Structures.
    Yao B; Wang H; Zhou Q; Wu M; Zhang M; Li C; Shi G
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28513994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Patterning of Highly Conductive PEDOT:PSS/Ionic Liquid Hydrogel via Microreactive Inkjet Printing.
    Teo MY; RaviChandran N; Kim N; Kee S; Stuart L; Aw KC; Stringer J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37069-37076. PubMed ID: 31533420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-Temperature-Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics.
    Zhang S; Chen Y; Liu H; Wang Z; Ling H; Wang C; Ni J; Çelebi-Saltik B; Wang X; Meng X; Kim HJ; Baidya A; Ahadian S; Ashammakhi N; Dokmeci MR; Travas-Sejdic J; Khademhosseini A
    Adv Mater; 2020 Jan; 32(1):e1904752. PubMed ID: 31657081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.