These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30884163)

  • 41. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polydimethylsiloxane (PDMS)-Based Flexible Optical Electrodes with Conductive Composite Hydrogels Integrated Probe for Optogenetics.
    Zhao Y; Wang K; Li S; Zhang P; Shen Y; Fu Y; Zhang Y; Zhou J; Wang C
    J Biomed Nanotechnol; 2018 Jun; 14(6):1099-1106. PubMed ID: 29843874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review.
    García-Torres J; Colombi S; Macor LP; Alemán C
    Int J Biol Macromol; 2022 Oct; 219():312-332. PubMed ID: 35934076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Programmable Knot Microfibers from Piezoelectric Microfluidics.
    Yang C; Yu Y; Wang X; Shang L; Zhao Y
    Small; 2022 Feb; 18(5):e2104309. PubMed ID: 34825481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic Fabrication of Multistimuli-Responsive Tubular Hydrogels for Cellular Scaffolds.
    Kim D; Jo A; Imani KBC; Kim D; Chung JW; Yoon J
    Langmuir; 2018 Apr; 34(14):4351-4359. PubMed ID: 29553747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices.
    Lay M; Pèlach MÀ; Pellicer N; Tarrés JA; Bun KN; Vilaseca F
    Carbohydr Polym; 2017 Jun; 165():86-95. PubMed ID: 28363579
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabricating multi-scale controllable PEDOT:PSS arrays
    Lin Y; Mao J; Fan Q; Wang J
    Soft Matter; 2024 Mar; 20(10):2394-2399. PubMed ID: 38376846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes.
    Sandu G; Ernould B; Rolland J; Cheminet N; Brassinne J; Das PR; Filinchuk Y; Cheng L; Komsiyska L; Dubois P; Melinte S; Gohy JF; Lazzaroni R; Vlad A
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34865-34874. PubMed ID: 28910075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication Process of Bilayer RGO/PEDOT:PSS Film for Flexible Transparent Conductive Electrode.
    Park MU; Song M; Lee SM; Ryu S; Chung DW
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6147-6151. PubMed ID: 29677758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic Generation of Microsprings with Ionic Liquid Encapsulation for Flexible Electronics.
    Yu Y; Guo J; Sun L; Zhang X; Zhao Y
    Research (Wash D C); 2019; 2019():6906275. PubMed ID: 31549079
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Stretchable and Highly Conductive PEDOT:PSS/Ionic Liquid Composite Transparent Electrodes for Solution-Processed Stretchable Electronics.
    Teo MY; Kim N; Kee S; Kim BS; Kim G; Hong S; Jung S; Lee K
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):819-826. PubMed ID: 27990796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A two-stage enzymatic synthesis of conductive poly(3,4-ethylenedioxythiophene).
    Wang J; Fang BS; Chou KY; Chen CC; Gu Y
    Enzyme Microb Technol; 2014 Jan; 54():45-50. PubMed ID: 24267567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vacuum-assisted bilayer PEDOT:PSS/cellulose nanofiber composite film for self-standing, flexible, conductive electrodes.
    Ko Y; Kim D; Kim UJ; You J
    Carbohydr Polym; 2017 Oct; 173():383-391. PubMed ID: 28732880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Conductive Hydrogel Polymer Fibers toward Promising Wearable Thermoelectric Energy Harvesting.
    Liu J; Jia Y; Jiang Q; Jiang F; Li C; Wang X; Liu P; Liu P; Hu F; Du Y; Xu J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44033-44040. PubMed ID: 30523679
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly Conductive, Stretchable, and Transparent PEDOT:PSS Electrodes Fabricated with Triblock Copolymer Additives and Acid Treatment.
    Lee JH; Jeong YR; Lee G; Jin SW; Lee YH; Hong SY; Park H; Kim JW; Lee SS; Ha JS
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28027-28035. PubMed ID: 30047263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reversibly Assembled Electroconductive Hydrogel via a Host-Guest Interaction for 3D Cell Culture.
    Xu Y; Cui M; Patsis PA; Günther M; Yang X; Eckert K; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7715-7724. PubMed ID: 30714715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Si/SiO
    Park E; Kim J; Chung DJ; Park MS; Kim H; Kim JH
    ChemSusChem; 2016 Oct; 9(19):2754-2758. PubMed ID: 27572935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.