BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30884229)

  • 1. 3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications.
    Koh JJ; Lim GJH; Zhou X; Zhang X; Ding J; He C
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13787-13795. PubMed ID: 30884229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive Printed All-Cellulose Membranes with Hierarchical Structure for Highly Efficient Separation of Oil/Water Nanoemulsions.
    Li D; Huang X; Huang Y; Yuan J; Huang D; Cheng GJ; Zhang L; Chang C
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44375-44382. PubMed ID: 31682395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of factors governing oil-water separation process using TiO₂ films prepared by spray deposition of nanoparticle dispersions.
    Gondal MA; Sadullah MS; Dastageer MA; McKinley GH; Panchanathan D; Varanasi KK
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13422-9. PubMed ID: 25058802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide coated meshes with stable underwater superoleophobicity and anti-oil-fouling property for highly efficient oil/water separation.
    Chen C; Chen B
    Sci Total Environ; 2019 Dec; 696():133777. PubMed ID: 31442728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Oil-Fouling Resistance of Amorphous Cellulose Surface Underwater: A Wetting Study and Application.
    Zhou X; Koh JJ; He C
    Langmuir; 2019 Jan; 35(4):839-847. PubMed ID: 30636424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels.
    Baniasadi H; Ajdary R; Trifol J; Rojas OJ; Seppälä J
    Carbohydr Polym; 2021 Aug; 266():118114. PubMed ID: 34044931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of an Oil/Water Mixture Separator with In Situ Demulsification and Separation.
    Yan C; Ma S; Ji Z; Guo Y; Liu Z; Zhang X; Wang X
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the performance of iron-based superhydrophilic meshes for oil-water separation.
    Preethi V; Nair S; Ramesh ST; Gandhimathi R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(9):793-804. PubMed ID: 37458992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction to "3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications".
    Koh JJ; Lim GJH; Zhou X; Zhang X; Ding J; He C
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35510. PubMed ID: 31518112
    [No Abstract]   [Full Text] [Related]  

  • 10. Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation.
    Li Y; Zhang H; Ma C; Yin H; Gong L; Duh Y; Feng R
    Carbohydr Polym; 2019 Dec; 226():115279. PubMed ID: 31582078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures.
    Li VC; Dunn CK; Zhang Z; Deng Y; Qi HJ
    Sci Rep; 2017 Aug; 7(1):8018. PubMed ID: 28808235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation.
    Yin K; Chu D; Dong X; Wang C; Duan JA; He J
    Nanoscale; 2017 Sep; 9(37):14229-14235. PubMed ID: 28914319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.
    Zhao T; Zhang D; Yu C; Jiang L
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24186-91. PubMed ID: 27564457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A superhydrophilic cement-coated mesh: an acid, alkali, and organic reagent-free material for oil/water separation.
    Song J; Li S; Zhao C; Lu Y; Zhao D; Sun J; Roy T; Carmalt CJ; Deng X; Parkin IP
    Nanoscale; 2018 Jan; 10(4):1920-1929. PubMed ID: 29319091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Superhydrophilic and Underwater Superoleophobic Nanofiber-Based Meshes from Waste Glass for Multifunctional Oil/Water Separation.
    Ma Q; Cheng H; Yu Y; Huang Y; Lu Q; Han S; Chen J; Wang R; Fane AG; Zhang H
    Small; 2017 May; 13(19):. PubMed ID: 28306204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties.
    Wang W; Lin J; Cheng J; Cui Z; Si J; Wang Q; Peng X; Turng LS
    J Hazard Mater; 2020 Mar; 385():121582. PubMed ID: 31818654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible Meshes with Appropriate Wettabilities for Underwater Oil Transportation/Collection and Highly Effective Oil/Water Separation.
    Wang CF; Wang WN; Kuo SW; Chiang YW; Hung JH; Lee KJ
    Langmuir; 2018 Sep; 34(38):11442-11448. PubMed ID: 30184425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin-Based Direct Ink Printed Structural Scaffolds.
    Jiang B; Yao Y; Liang Z; Gao J; Chen G; Xia Q; Mi R; Jiao M; Wang X; Hu L
    Small; 2020 Aug; 16(31):e1907212. PubMed ID: 32597027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cupric Phosphate Nanosheets-Wrapped Inorganic Membranes with Superhydrophilic and Outstanding Anticrude Oil-Fouling Property for Oil/Water Separation.
    Zhang S; Jiang G; Gao S; Jin H; Zhu Y; Zhang F; Jin J
    ACS Nano; 2018 Jan; 12(1):795-803. PubMed ID: 29298377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated carbon fibers functionalized with superhydrophilic coated pDA/TiO
    Wang D; Huang L; Fang H; Li S; Wang G; Zhou S; Zhao R; Sun X
    J Hazard Mater; 2024 Mar; 465():133373. PubMed ID: 38159520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.