These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30884273)

  • 1. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns.
    Wang R; Yuan Y; Yen H; Grieneisen M; Arnold J; Wang D; Wang C; Zhang M
    Sci Total Environ; 2019 Jun; 669():512-526. PubMed ID: 30884273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled modeling using PRZM/RICEWQ and SWAT for the North Tiaoxi Watershed.
    Cheng Y; Zhou J; Liao J; Mao D; Chen W; Shan Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12635-12645. PubMed ID: 32006327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.
    Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H
    Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pesticide fate at watershed scale: A new framework integrating multimedia behavior with hydrological processes.
    Yan X; Zhang Z; Chen L; Jiao C; Zhu K; Guo J; Pang M; Jin Z; Shen Z
    J Environ Manage; 2022 Oct; 319():115758. PubMed ID: 35982562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects.
    Bannwarth MA; Grovermann C; Schreinemachers P; Ingwersen J; Lamers M; Berger T; Streck T
    J Environ Manage; 2016 Jan; 165():298-312. PubMed ID: 26431614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling field-scale and watershed models for regulatory modeling of pesticide aquatic exposures in streams.
    Ghebremichael L; Chen W; Jacobson A; Roy C; Perkins DB; Brain R
    Integr Environ Assess Manag; 2022 Nov; 18(6):1678-1693. PubMed ID: 35212130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.
    Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ
    J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.
    Niazi M; Obropta C; Miskewitz R
    J Environ Manage; 2015 Mar; 151():167-77. PubMed ID: 25576694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California.
    Luo Y; Zhang X; Liu X; Ficklin D; Zhang M
    Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Emission Estimation and Fate Simulation of Dichlorvos in the Dongjiang River Watershed].
    Zhang B; Zhang QQ; Ying GG
    Huan Jing Ke Xue; 2021 Jan; 42(1):127-135. PubMed ID: 33372464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling spray drift and runoff-related inputs of pesticides to receiving water.
    Zhang X; Luo Y; Goh KS
    Environ Pollut; 2018 Mar; 234():48-58. PubMed ID: 29156441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.
    Fohrer N; Dietrich A; Kolychalow O; Ulrich U
    J Environ Qual; 2014 Jan; 43(1):75-85. PubMed ID: 25602542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of water quality in an agricultural watershed as affected by almond pest management practices.
    Zhang X; Liu X; Luo Y; Zhang M
    Water Res; 2008 Aug; 42(14):3685-96. PubMed ID: 18672261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet.
    Sommerlot AR; Pouyan Nejadhashemi A; Woznicki SA; Prohaska MD
    J Environ Manage; 2013 Oct; 128():735-48. PubMed ID: 23851319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pesticide modelling for a small catchment using SWAT-2000.
    Kannan N; White SM; Worrall F; Whelan MJ
    J Environ Sci Health B; 2006; 41(7):1049-70. PubMed ID: 16923591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling fate and transport of pesticides from dryland agriculture using SWAT model.
    Dogan FN; Karpuzcu ME
    J Environ Manage; 2023 May; 334():117457. PubMed ID: 36801806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.
    Ghebremichael LT; Veith TL; Hamlett JM
    J Environ Manage; 2013 Jan; 114():381-94. PubMed ID: 23195139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.