These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30884273)

  • 21. A Systems Approach to Modeling Watershed Ecohydrology and Pesticide Transport.
    Janney P; Jenkins J
    J Environ Qual; 2019 Jul; 48(4):1047-1056. PubMed ID: 31589676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed.
    Luo Y; Zhang M
    J Environ Qual; 2009; 38(2):664-74. PubMed ID: 19244487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in pesticide environmental fate and exposure assessments.
    Rice PJ; Rice PJ; Arthur EL; Barefoot AC
    J Agric Food Chem; 2007 Jul; 55(14):5367-76. PubMed ID: 17552539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff.
    Zhang X; Zhang M
    Sci Total Environ; 2011 Apr; 409(10):1949-58. PubMed ID: 21377192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Passive sampling and ecohydrologic modeling to investigate pesticide surface water loading in the Zollner Creek watershed, Oregon, USA.
    Janney P; Jenkins J
    Sci Total Environ; 2022 May; 819():152955. PubMed ID: 35007592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed.
    Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H
    Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pesticide transport simulation in a tropical catchment by SWAT.
    Bannwarth MA; Sangchan W; Hugenschmidt C; Lamers M; Ingwersen J; Ziegler AD; Streck T
    Environ Pollut; 2014 Aug; 191():70-9. PubMed ID: 24811948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT.
    Chen H; Luo Y; Potter C; Moran PJ; Grieneisen ML; Zhang M
    Water Res; 2017 Sep; 121():374-385. PubMed ID: 28577487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of agricultural pesticide inert ingredient transport following modeling approach: Case study of two formulation agents in Sacramento River watershed.
    Tu LH; Grieneisen ML; Wang R; Watanabe H; Zhang M
    J Environ Manage; 2023 Mar; 330():117123. PubMed ID: 36586371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Watershed-level comparison of predictability and sensitivity of two phosphorus models.
    Sen S; Srivastava P; Vadas PA; Kalin L
    J Environ Qual; 2012; 41(5):1642-52. PubMed ID: 23099956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A heavy metal module coupled with the SWAT model and its preliminary application in a mine-impacted watershed in China.
    Meng Y; Zhou L; He S; Lu C; Wu G; Ye W; Ji P
    Sci Total Environ; 2018 Feb; 613-614():1207-1219. PubMed ID: 28954381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing controls on selenium fate and transport in watersheds using the SWAT model.
    Neupane P; Bailey RT; Tavakoli-Kivi S
    Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of the SWAT Model Special Section: Overview and Insights.
    Gassman PW; Sadeghi AM; Srinivasan R
    J Environ Qual; 2014 Jan; 43(1):1-8. PubMed ID: 25602534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.
    Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR
    J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the Impact of Land Use Change on Basin-scale Transfer of Fecal Indicator Bacteria: SWAT Model Performance.
    Kim M; Boithias L; Cho KH; Sengtaheuanghoung O; Ribolzi O
    J Environ Qual; 2018 Sep; 47(5):1115-1122. PubMed ID: 30272793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pollution fate and transport model application in a semi-arid region: Is some number better than no number?
    Özcan Z; Başkan O; Düzgün HŞ; Kentel E; Alp E
    Sci Total Environ; 2017 Oct; 595():425-440. PubMed ID: 28395258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed.
    Chiu MC; Hunt L; Resh VH
    Sci Total Environ; 2017 Mar; 581-582():741-749. PubMed ID: 28069310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pesticide fate modeling in soils with the crop model STICS: Feasibility for assessment of agricultural practices.
    Queyrel W; Habets F; Blanchoud H; Ripoche D; Launay M
    Sci Total Environ; 2016 Jan; 542(Pt A):787-802. PubMed ID: 26556743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios.
    Yen H; White MJ; Arnold JG; Keitzer SC; Johnson MV; Atwood JD; Daggupati P; Herbert ME; Sowa SP; Ludsin SA; Robertson DM; Srinivasan R; Rewa CA
    Sci Total Environ; 2016 Nov; 569-570():1265-1281. PubMed ID: 27387796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.