These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30884273)

  • 41. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California.
    Chiu MC; Hunt L; Resh VH
    Environ Pollut; 2016 Dec; 219():89-98. PubMed ID: 27744143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview.
    Malone RW; Ahuja LR; Ma L; Wauchope RD; Ma Q; Rojas KW
    Pest Manag Sci; 2004 Mar; 60(3):205-21. PubMed ID: 15025234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of thiobencarb runoff from rice farming practices in a California watershed using an integrated RiceWQ-AnnAGNPS system.
    Wang R; Bingner RL; Yuan Y; Locke M; Herring G; Denton D; Zhang M
    Sci Total Environ; 2021 May; 767():144898. PubMed ID: 33550063
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.
    Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G
    Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: model development and initial evaluation.
    Zhang X; Izaurralde RC; Arnold JG; Williams JR; Srinivasan R
    Sci Total Environ; 2013 Oct; 463-464():810-22. PubMed ID: 23859899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs).
    Ligaray M; Baek SS; Kwon HO; Choi SD; Cho KH
    J Hazard Mater; 2016 Dec; 320():442-457. PubMed ID: 27585277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
    Sommerlot AR; Nejadhashemi AP; Woznicki SA; Giri S; Prohaska MD
    J Environ Manage; 2013 Sep; 127():228-36. PubMed ID: 23764473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluating the influence of climate change on the fate and transport of fecal coliform bacteria using the modified SWAT model.
    Jeon DJ; Ligaray M; Kim M; Kim G; Lee G; Pachepsky YA; Cha DH; Cho KH
    Sci Total Environ; 2019 Mar; 658():753-762. PubMed ID: 30583170
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of the SWAT model to the Xiangjiang river watershed in subtropical central China.
    Luo Q; Li Y; Wang K; Wu J
    Water Sci Technol; 2013; 67(9):2110-6. PubMed ID: 23656956
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the soil and water assessment tool.
    Nafees Ahmad HM; Sinclair A; Jamieson R; Madani A; Hebb D; Havard P; Yiridoe EK
    J Environ Qual; 2011; 40(4):1182-94. PubMed ID: 21712588
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved Simulation of Edaphic and Manure Phosphorus Loss in SWAT.
    Collick AS; Veith TL; Fuka DR; Kleinman PJ; Buda AR; Weld JL; Bryant RB; Vadas PA; White MJ; Harmel RD; Easton ZM
    J Environ Qual; 2016 Jul; 45(4):1215-25. PubMed ID: 27380069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.
    Cho KH; Pachepsky YA; Kim JH; Kim JW; Park MH
    Water Res; 2012 Oct; 46(15):4750-60. PubMed ID: 22784807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SWAT meta-modeling as support of the management scenario analysis in large watersheds.
    Azzellino A; Çevirgen S; Giupponi C; Parati P; Ragusa F; Salvetti R
    Water Sci Technol; 2015; 72(12):2103-11. PubMed ID: 26675997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of TREECS Modeling System to Strontium-90 for Borschi Watershed near Chernobyl, Ukraine.
    Johnson BE; Dortch MS
    J Environ Radioact; 2014 May; 131():31-9. PubMed ID: 24220001
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed.
    Frey SK; Topp E; Edge T; Fall C; Gannon V; Jokinen C; Marti R; Neumann N; Ruecker N; Wilkes G; Lapen DR
    Water Res; 2013 Oct; 47(16):6326-37. PubMed ID: 24079968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction.
    Im S; Brannan KM; Mostaghimi S; Kim SM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Sep; 42(11):1561-70. PubMed ID: 17849297
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrological modeling of Fecal Indicator Bacteria in a tropical mountain catchment.
    Kim M; Boithias L; Cho KH; Silvera N; Thammahacksa C; Latsachack K; Rochelle-Newall E; Sengtaheuanghoung O; Pierret A; Pachepsky YA; Ribolzi O
    Water Res; 2017 Aug; 119():102-113. PubMed ID: 28436821
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling phosphorus in the Lake Allatoona watershed using SWAT: I. Developing phosphorus parameter values.
    Radcliffe DE; Lin Z; Risse LM; Romeis JJ; Jackson CR
    J Environ Qual; 2009; 38(1):111-20. PubMed ID: 19141800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.