These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 30884313)
1. Deep neural network models of sensory systems: windows onto the role of task constraints. Kell AJ; McDermott JH Curr Opin Neurobiol; 2019 Apr; 55():121-132. PubMed ID: 30884313 [TBL] [Abstract][Full Text] [Related]
2. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks. Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD eNeuro; 2021; 8(1):. PubMed ID: 33328247 [TBL] [Abstract][Full Text] [Related]
3. If deep learning is the answer, what is the question? Saxe A; Nelli S; Summerfield C Nat Rev Neurosci; 2021 Jan; 22(1):55-67. PubMed ID: 33199854 [TBL] [Abstract][Full Text] [Related]
5. Neural network models and deep learning. Kriegeskorte N; Golan T Curr Biol; 2019 Apr; 29(7):R231-R236. PubMed ID: 30939301 [TBL] [Abstract][Full Text] [Related]
6. A recurrent neural network framework for flexible and adaptive decision making based on sequence learning. Zhang Z; Cheng H; Yang T PLoS Comput Biol; 2020 Nov; 16(11):e1008342. PubMed ID: 33141824 [TBL] [Abstract][Full Text] [Related]
7. Engineering a Less Artificial Intelligence. Sinz FH; Pitkow X; Reimer J; Bethge M; Tolias AS Neuron; 2019 Sep; 103(6):967-979. PubMed ID: 31557461 [TBL] [Abstract][Full Text] [Related]
8. Emergent mechanisms of evidence integration in recurrent neural networks. Quax S; van Gerven M PLoS One; 2018; 13(10):e0205676. PubMed ID: 30325970 [TBL] [Abstract][Full Text] [Related]
9. Deep social neuroscience: the promise and peril of using artificial neural networks to study the social brain. Sievers B; Thornton MA Soc Cogn Affect Neurosci; 2024 Feb; 19(1):. PubMed ID: 38334747 [TBL] [Abstract][Full Text] [Related]
10. Emergence of Direction-Selective Retinal Cell Types in Task-Optimized Deep Learning Models. Murray KT; Wang MB; Lynch N J Comput Biol; 2022 Apr; 29(4):370-381. PubMed ID: 35275740 [TBL] [Abstract][Full Text] [Related]
11. Deep Reinforcement Learning and Its Neuroscientific Implications. Botvinick M; Wang JX; Dabney W; Miller KJ; Kurth-Nelson Z Neuron; 2020 Aug; 107(4):603-616. PubMed ID: 32663439 [TBL] [Abstract][Full Text] [Related]
12. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy. Kell AJE; Yamins DLK; Shook EN; Norman-Haignere SV; McDermott JH Neuron; 2018 May; 98(3):630-644.e16. PubMed ID: 29681533 [TBL] [Abstract][Full Text] [Related]
13. Deep Neural Networks for Modeling Visual Perceptual Learning. Wenliang LK; Seitz AR J Neurosci; 2018 Jul; 38(27):6028-6044. PubMed ID: 29793979 [TBL] [Abstract][Full Text] [Related]
14. From lazy to rich to exclusive task representations in neural networks and neural codes. Farrell M; Recanatesi S; Shea-Brown E Curr Opin Neurobiol; 2023 Dec; 83():102780. PubMed ID: 37757585 [TBL] [Abstract][Full Text] [Related]
15. Learning, memory, and the role of neural network architecture. Hermundstad AM; Brown KS; Bassett DS; Carlson JM PLoS Comput Biol; 2011 Jun; 7(6):e1002063. PubMed ID: 21738455 [TBL] [Abstract][Full Text] [Related]
16. Task representations in neural networks trained to perform many cognitive tasks. Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294 [TBL] [Abstract][Full Text] [Related]