BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30884352)

  • 1. Physical mechanism on edge-dependent electrons transfer in graphene in mid infrared region.
    Mu X; Chai J; Wang J; Li Y; Sun M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():136-145. PubMed ID: 30884352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoninduced charge redistribution of graphene determined by edge structures in the infrared region.
    Chai J; Mu X; Li J; Zhu L; Zhai K; Sun M; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117858. PubMed ID: 31813728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of phonon anomaly at the armchair edge of single-layer graphene in air.
    Zhang W; Li LJ
    ACS Nano; 2011 Apr; 5(4):3347-53. PubMed ID: 21388225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of edge on graphene plasmons as revealed by infrared nanoimaging.
    Xu Q; Ma T; Danesh M; Shivananju BN; Gan S; Song J; Qiu CW; Cheng HM; Ren W; Bao Q
    Light Sci Appl; 2017 Feb; 6(2):e16204. PubMed ID: 30167226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Materials with Zigzag and Armchair Edges.
    Yamada Y; Kawai M; Yorimitsu H; Otsuka S; Takanashi M; Sato S
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40710-40739. PubMed ID: 30339344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrothermal Control of Graphene Plasmon-Phonon Polaritons.
    Guo Q; Guinea F; Deng B; Sarpkaya I; Li C; Chen C; Ling X; Kong J; Xia F
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28621022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of plasmonic coupling in gallium nanoparticles/graphene/SiC.
    Yi C; Kim TH; Jiao W; Yang Y; Lazarides A; Hingerl K; Bruno G; Brown A; Losurdo M
    Small; 2012 Sep; 8(17):2721-30. PubMed ID: 22674808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements.
    Vacacela Gomez C; Pisarra M; Gravina M; Pitarke JM; Sindona A
    Phys Rev Lett; 2016 Sep; 117(11):116801. PubMed ID: 27661709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron/infrared-phonon coupling in ABC trilayer graphene.
    Zan X; Guo X; Deng A; Huang Z; Liu L; Wu F; Yuan Y; Zhao J; Peng Y; Li L; Zhang Y; Li X; Zhu J; Dong J; Shi D; Yang W; Yang X; Shi Z; Du L; Dai Q; Zhang G
    Nat Commun; 2024 Feb; 15(1):1888. PubMed ID: 38424092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-imaging of an edge-excited plasmon mode in graphene.
    Cheng G; Wang D; Dai S; Fan X; Wu F; Li X; Zeng C
    Nanoscale; 2018 Aug; 10(34):16314-16320. PubMed ID: 30129966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge-dependent transport properties in graphene.
    Goto H; Uesugi E; Eguchi R; Fujiwara A; Kubozono Y
    Nano Lett; 2013 Mar; 13(3):1126-30. PubMed ID: 23409962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.
    Xu XG; Jiang JH; Gilburd L; Rensing RG; Burch KS; Zhi C; Bando Y; Golberg D; Walker GC
    ACS Nano; 2014 Nov; 8(11):11305-12. PubMed ID: 25365544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helical edge states and edge-state transport in strained armchair graphene nanoribbons.
    Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX
    Sci Rep; 2017 Aug; 7(1):8854. PubMed ID: 28821764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring graphene nanocolloids as potential substrates for the enhancement of Raman scattering.
    Sun S; Zhang Z; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5085-90. PubMed ID: 23639455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton and phonon dynamics in highly aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Raman scattering.
    Zhu J; German R; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; van Loosdrecht PHM
    Nanoscale; 2018 Sep; 10(37):17975-17982. PubMed ID: 30226260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing graphene edges via Raman scattering.
    Gupta AK; Russin TJ; Gutiérrez HR; Eklund PC
    ACS Nano; 2009 Jan; 3(1):45-52. PubMed ID: 19206247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy.
    Xu YN; Zhan D; Liu L; Suo H; Ni ZH; Nguyen TT; Zhao C; Shen ZX
    ACS Nano; 2011 Jan; 5(1):147-52. PubMed ID: 21171568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.
    Duan J; Chen R; Cheng Y; Yang T; Zhai F; Dai Q; Chen J
    Adv Mater; 2018 May; 30(22):e1800367. PubMed ID: 29665105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region.
    Feng X; Li Z; Li X; Liu Y
    Sci Rep; 2016 Sep; 6():33260. PubMed ID: 27629800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.