These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 30884391)

  • 21. Relationships between riverine and terrestrial dissolved organic carbon: Concentration, radiocarbon signature, specific UV absorbance.
    Tipping E; Elias JL; Keenan PO; Helliwell RC; Pedentchouk N; Cooper RJ; Buckingham S; Gjessing E; Ascough P; Bryant CL; Garnett MH
    Sci Total Environ; 2022 Apr; 817():153000. PubMed ID: 35031358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity.
    Yallop AR; Clutterbuck B
    Sci Total Environ; 2009 Jun; 407(12):3803-13. PubMed ID: 19345986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling lateral carbon fluxes for agroecosystems in the Mid-Atlantic region: Control factors and importance for carbon budget.
    Luo X; Risal A; Qi J; Lee S; Zhang X; Alfieri JG; McCarty GW
    Sci Total Environ; 2024 Feb; 912():169128. PubMed ID: 38070562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights and issues with simulating terrestrial DOC loading of Arctic river networks.
    Kicklighter DW; Hayes DJ; McClelland JW; Peterson BJ; McGuire AD; Melillo JM
    Ecol Appl; 2013 Dec; 23(8):1817-36. PubMed ID: 24555311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment.
    Dinsmore KJ; Billett MF; Dyson KE
    Glob Chang Biol; 2013 Jul; 19(7):2133-48. PubMed ID: 23568485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate and atmospheric deposition drive the inter-annual variability and long-term trend of dissolved organic carbon flux in the conterminous United States.
    Wei X; Hayes DJ; Fernandez I; Fraver S; Zhao J; Weiskittel A
    Sci Total Environ; 2021 Jun; 771():145448. PubMed ID: 33736179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Winter-time climatic control on dissolved organic carbon export and surface water chemistry in an Adirondack forested watershed.
    Park IH; Mitchell MJ; Driscoll CT
    Environ Sci Technol; 2005 Sep; 39(18):6993-8. PubMed ID: 16201621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Influence of land use change on dissolved organic carbon export in Naoli River watershed. Northeast China].
    Yin XM; Lyu XG; Liu XT; Xue ZS
    Ying Yong Sheng Tai Xue Bao; 2015 Dec; 26(12):3788-94. PubMed ID: 27112020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchments.
    Ledesma JL; Grabs T; Bishop KH; Schiff SL; Köhler SJ
    Glob Chang Biol; 2015 Aug; 21(8):2963-79. PubMed ID: 25611952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California.
    Luo Y; Zhang X; Liu X; Ficklin D; Zhang M
    Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved forest dynamics leads to better hydrological predictions in watershed modeling.
    Haas H; Kalin L; Srivastava P
    Sci Total Environ; 2022 May; 821():153180. PubMed ID: 35051464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan.
    Chiang LC; Chuang YT; Han CC
    Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30669282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Watershed-level comparison of predictability and sensitivity of two phosphorus models.
    Sen S; Srivastava P; Vadas PA; Kalin L
    J Environ Qual; 2012; 41(5):1642-52. PubMed ID: 23099956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling.
    Bailey RT; Bieger K; Flores L; Tomer M
    Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon.
    Kraus TE; Anderson CA; Morgenstern K; Downing BD; Pellerin BA; Bergamaschi BA
    J Environ Qual; 2010; 39(6):2100-12. PubMed ID: 21284308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers.
    Chaves-Ulloa R; Taylor BW; Broadley HJ; Cottingham KL; Baer NA; Weathers KC; Ewing HA; Chen CY
    Ecol Appl; 2016 Sep; 26(6):1771-1784. PubMed ID: 27755696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems - A case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France).
    Deirmendjian L; Anschutz P; Morel C; Mollier A; Augusto L; Loustau D; Cotovicz LC; Buquet D; Lajaunie K; Chaillou G; Voltz B; Charbonnier C; Poirier D; Abril G
    Sci Total Environ; 2019 Apr; 661():613-629. PubMed ID: 30682612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial and temporal uncertainty in climatic impacts on watershed systems.
    Tsvetkova O; Randhir TO
    Sci Total Environ; 2019 Oct; 687():618-633. PubMed ID: 31220716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: A catchment modeling approach - Part 2.
    Yeo IY; Lee S; Lang MW; Yetemen O; McCarty GW; Sadeghi AM; Evenson G
    Sci Total Environ; 2019 Feb; 653():1557-1570. PubMed ID: 30527888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.