BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30884702)

  • 1. Transcriptomic and proteomic effects of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3"Me) treatment on ethanol-stressed Saccharomyces cerevisiae cells.
    Chen Y; Cheng L; Zhang X; Cao J; Wu Z; Zheng X
    Food Res Int; 2019 May; 119():67-75. PubMed ID: 30884702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-seq transcriptomic analysis of green tea polyphenols regulation of differently expressed genes in Saccharomyces cerevisiae under ethanol stress.
    Cheng L; Zhang X; Zheng X; Wu Z; Weng P
    World J Microbiol Biotechnol; 2019 Mar; 35(4):59. PubMed ID: 30915597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcriptome analysis of the ameliorate effect of Cyclocarya paliurus triterpenoids on ethanol stress in Saccharomyces cerevisiae.
    Chen Y; Zhang X; Zhang M; Zhu J; Wu Z; Zheng X
    World J Microbiol Biotechnol; 2018 Nov; 34(12):182. PubMed ID: 30478689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated transcriptomic and proteomic analysis of the ethanol stress response in Saccharomyces cerevisiae Sc131.
    Li R; Miao Y; Yuan S; Li Y; Wu Z; Weng P
    J Proteomics; 2019 Jul; 203():103377. PubMed ID: 31102756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis.
    Li R; Xiong G; Yuan S; Wu Z; Miao Y; Weng P
    World J Microbiol Biotechnol; 2017 Nov; 33(11):206. PubMed ID: 29101531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the transcriptional regulator CsbHLH62 that negatively regulates EGCG3"Me biosynthesis in Camellia sinensis.
    Luo Y; Yu SS; Li J; Li Q; Wang KB; Huang JA; Liu ZH
    Gene; 2019 May; 699():8-15. PubMed ID: 30851424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae.
    Zeng L; Huang J; Feng P; Zhao X; Si Z; Long X; Cheng Q; Yi Y
    World J Microbiol Biotechnol; 2022 Jan; 38(2):34. PubMed ID: 34989900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic responses of Saccharomyces cerevisiae to ethanol stress using gas chromatography-mass spectrometry.
    Ming M; Wang X; Lian L; Zhang H; Gao W; Zhu B; Lou D
    Mol Omics; 2019 Jun; 15(3):216-221. PubMed ID: 31066408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.
    Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C
    Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization.
    Turanlı-Yıldız B; Benbadis L; Alkım C; Sezgin T; Akşit A; Gökçe A; Öztürk Y; Baykal AT; Çakar ZP; François JM
    J Biosci Bioeng; 2017 Sep; 124(3):309-318. PubMed ID: 28552194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of a caffeoyl-coenzyme A O-methyltransferase from Camellia sinensis and analysis of its catalytic activity.
    Zhang Y; Lv HP; Ma CY; Guo L; Tan JF; Peng QH; Lin Z
    J Zhejiang Univ Sci B; 2015 Feb; 16(2):103-12. PubMed ID: 25644465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation.
    Szopinska A; Christ E; Planchon S; König H; Evers D; Renaut J
    Proteomics; 2016 Feb; 16(4):593-608. PubMed ID: 26763469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol Induces Autophagy Regulated by Mitochondrial ROS in
    Jing H; Liu H; Zhang L; Gao J; Song H; Tan X
    J Microbiol Biotechnol; 2018 Dec; 28(12):1982-1991. PubMed ID: 30394045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Fluidity of Saccharomyces cerevisiae from
    Yang Y; Xia Y; Hu W; Tao L; Ni L; Yu J; Ai L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM; Tan Y; Yuan YJ
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii.
    Tronchoni J; Curiel JA; Morales P; Torres-Pérez R; Gonzalez R
    Int J Food Microbiol; 2017 Jan; 241():60-68. PubMed ID: 27756034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of the formation of insoluble ubiquitinated protein aggregates by EGCG3"Me in the alloxan-induced diabetic kidney.
    Cai S; Zhong Y; Li Y; Huang J; Zhang J; Luo G; Liu Z
    PLoS One; 2013; 8(9):e75687. PubMed ID: 24098713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia and iron requirements are the main drivers in transcriptional adaptation of Kluyveromyces lactis during wine aerobic fermentation.
    Tronchoni J; Rodrigues AJ; Curiel JA; Morales P; Gonzalez R
    Int J Food Microbiol; 2017 Apr; 246():40-49. PubMed ID: 28189053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.