These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30884722)

  • 41. Chia seed (Salvia hispanica L.) mucilage (a heteropolysaccharide): Functional, thermal, rheological behaviour and its utilization.
    Punia S; Dhull SB
    Int J Biol Macromol; 2019 Nov; 140():1084-1090. PubMed ID: 31465801
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering water-induced ceramide/lecithin oleogels: understanding the influence of water added upon pre- and post-nucleation.
    Guo S; Lv M; Chen Y; Hou T; Zhang Y; Huang Z; Cao Y; Rogers M; Lan Y
    Food Funct; 2020 Mar; 11(3):2048-2057. PubMed ID: 32159192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and rheology of oleogels made from rice bran wax and rice bran oil.
    Wijarnprecha K; Aryusuk K; Santiwattana P; Sonwai S; Rousseau D
    Food Res Int; 2018 Oct; 112():199-208. PubMed ID: 30131129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Glyceryl Monoolein Addition on the Foaming Properties and Stability of Whipped Oleogels.
    Andriotis EG; Monou PK; Komis G; Bouropoulos N; Ritzoulis C; Delis G; Kiosis E; Arsenos G; Fatouros DG
    Gels; 2022 Oct; 8(11):. PubMed ID: 36354613
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil.
    Toro-Vazquez JF; Morales-Rueda J; Torres-Martínez A; Charó-Alonso MA; Mallia VA; Weiss RG
    Langmuir; 2013 Jun; 29(25):7642-54. PubMed ID: 23697446
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Production of omega 3-rich oils from underutilized chia seeds. Comparison between supercritical fluid and pressurized liquid extraction methods.
    Villanueva-Bermejo D; Calvo MV; Castro-Gómez P; Fornari T; Fontecha J
    Food Res Int; 2019 Jan; 115():400-407. PubMed ID: 30599958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters.
    Zetzl AK; Marangoni AG; Barbut S
    Food Funct; 2012 Mar; 3(3):327-37. PubMed ID: 22377795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Textural, mechanical, and microstructural properties of restructured pimiento alginate-guar gels.
    Mousavi SMR; Rafe A; Yeganehzad S
    J Texture Stud; 2019 Apr; 50(2):155-164. PubMed ID: 30575035
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate.
    Zhang R; Zhang Y; Yu J; Gao Y; Mao L
    Foods; 2022 Aug; 11(15):. PubMed ID: 35954132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The gelation of oil using ethyl cellulose.
    Davidovich-Pinhas M; Barbut S; Marangoni AG
    Carbohydr Polym; 2015 Mar; 117():869-878. PubMed ID: 25498711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Double network oleogels co-stabilized by hydroxypropyl methylcellulose and monoglyceride crystals: Baking applications.
    Jiang Q; Yu Z; Meng Z
    Int J Biol Macromol; 2022 Jun; 209(Pt A):180-187. PubMed ID: 35395279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology.
    Goh KK; Matia-Merino L; Chiang JH; Quek R; Soh SJ; Lentle RG
    Carbohydr Polym; 2016 Sep; 149():297-307. PubMed ID: 27261754
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amphiphilogels for drug delivery: formulation and characterization.
    Jibry N; Heenan RK; Murdan S
    Pharm Res; 2004 Oct; 21(10):1852-61. PubMed ID: 15553232
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Sorbitan Monostearate and Stearyl Alcohol on the Physicochemical Parameters of Sunflower-Wax-Based Oleogels.
    Bharti D; Kim D; Banerjee I; Rousseau D; Pal K
    Gels; 2022 Aug; 8(8):. PubMed ID: 36005121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation.
    de Campo C; Dos Santos PP; Costa TMH; Paese K; Guterres SS; Rios AO; Flôres SH
    Food Chem; 2017 Nov; 234():1-9. PubMed ID: 28551210
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin.
    Liu N; Lu Y; Zhang Y; Gao Y; Mao L
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2286-2294. PubMed ID: 33096181
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fractionation of ethylcellulose oleogels during setting.
    Gravelle AJ; Barbut S; Marangoni AG
    Food Funct; 2013 Jan; 4(1):153-61. PubMed ID: 23165763
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels.
    Truong T; Prakash S; Bhandari B
    Food Chem; 2019 Jul; 285():86-93. PubMed ID: 30797379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties.
    da Silva TLT; Danthine S
    Food Res Int; 2022 Apr; 154():110997. PubMed ID: 35337588
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development, Characterization, and Utilization of Food-Grade Polymer Oleogels.
    Davidovich-Pinhas M; Barbut S; Marangoni AG
    Annu Rev Food Sci Technol; 2016; 7():65-91. PubMed ID: 26735799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.