These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 30884832)
1. Medical-Grade PCL Based Polyurethane System for FDM 3D Printing-Characterization and Fabrication. Haryńska A; Kucinska-Lipka J; Sulowska A; Gubanska I; Kostrzewa M; Janik H Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30884832 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology. Haryńska A; Gubanska I; Kucinska-Lipka J; Janik H Polymers (Basel); 2018 Nov; 10(12):. PubMed ID: 30961229 [TBL] [Abstract][Full Text] [Related]
3. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Verstraete G; Samaro A; Grymonpré W; Vanhoorne V; Van Snick B; Boone MN; Hellemans T; Van Hoorebeke L; Remon JP; Vervaet C Int J Pharm; 2018 Jan; 536(1):318-325. PubMed ID: 29217471 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a Medical Grade Thermoplastic Polyurethane for the Manufacture of an Implantable Medical Device: The Impact of FDM 3D-Printing and Gamma Sterilization. M'Bengue MS; Mesnard T; Chai F; Maton M; Gaucher V; Tabary N; García-Fernandez MJ; Sobocinski J; Martel B; Blanchemain N Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839778 [TBL] [Abstract][Full Text] [Related]
6. Development of filaments for fused deposition modeling 3D printing with medical grade poly(lactic-co-glycolic acid) copolymers. Feuerbach T; Callau-Mendoza S; Thommes M Pharm Dev Technol; 2019 Apr; 24(4):487-493. PubMed ID: 30149761 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of Drug-Eluting Nano-Hydroxylapatite Filled Polycaprolactone Nanocomposites Using Solution-Extrusion 3D Printing Technique. Chou PY; Chou YC; Lai YH; Lin YT; Lu CJ; Liu SJ Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498261 [TBL] [Abstract][Full Text] [Related]
8. 3D printed estradiol-eluting urogynecological mesh implants: Influence of material and mesh geometry on their mechanical properties. Farmer ZL; Utomo E; Domínguez-Robles J; Mancinelli C; Mathew E; Larrañeta E; Lamprou DA Int J Pharm; 2021 Jan; 593():120145. PubMed ID: 33309830 [TBL] [Abstract][Full Text] [Related]
9. Extrusion-based technologies for 3D printing: a comparative study of the processability of thermoplastic polyurethane-based formulations. Aguilar-de-Leyva Á; Linares V; Domínguez-Robles J; Casas M; Caraballo I Pharm Dev Technol; 2023 Dec; 28(10):939-947. PubMed ID: 37878535 [TBL] [Abstract][Full Text] [Related]
10. Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering. Haryńska A; Carayon I; Kosmela P; Brillowska-Dąbrowska A; Łapiński M; Kucińska-Lipka J; Janik H Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33050040 [TBL] [Abstract][Full Text] [Related]
11. Proper Blends of Biodegradable Polycaprolactone and Natural Rubber for 3D Printing. Wissamitanan T; Dechwayukul C; Kalkornsurapranee E; Thongruang W Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33092210 [TBL] [Abstract][Full Text] [Related]
12. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134 [TBL] [Abstract][Full Text] [Related]
13. Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method. Wang J; Yang B; Lin X; Gao L; Liu T; Lu Y; Wang R Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33120954 [TBL] [Abstract][Full Text] [Related]
14. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Tan DK; Maniruzzaman M; Nokhodchi A Pharmaceutics; 2018 Oct; 10(4):. PubMed ID: 30356002 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics. Tzounis L; Petousis M; Grammatikos S; Vidakis N Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604960 [TBL] [Abstract][Full Text] [Related]
16. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing. Tao Y; Wang H; Li Z; Li P; Shi SQ Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772694 [TBL] [Abstract][Full Text] [Related]
17. A Low-Cost Method to Prepare Biocompatible Filaments with Enhanced Physico-Mechanical Properties for FDM 3D Printing. Tan DK; Münzenrieder N; Maniruzzaman M; Nokhodchi A Curr Drug Deliv; 2021; 18(6):700-711. PubMed ID: 33155909 [TBL] [Abstract][Full Text] [Related]
18. Cellulose and Graphene Based Polyurethane Nanocomposites for FDM 3D Printing: Filament Properties and Printability. Larraza I; Vadillo J; Calvo-Correas T; Tejado A; Olza S; Peña-Rodríguez C; Arbelaiz A; Eceiza A Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33803415 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering. Wang F; Tankus EB; Santarella F; Rohr N; Sharma N; Märtin S; Michalscheck M; Maintz M; Cao S; Thieringer FM Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215595 [TBL] [Abstract][Full Text] [Related]
20. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Alhijjaj M; Belton P; Qi S Eur J Pharm Biopharm; 2016 Nov; 108():111-125. PubMed ID: 27594210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]