These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 30884891)

  • 1. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming.
    Clemente M; Corigliano MG; Pariani SA; Sánchez-López EF; Sander VA; Ramos-Duarte VA
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30884891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.
    Turra D; Lorito M
    Curr Protein Pept Sci; 2011 Aug; 12(5):374-85. PubMed ID: 21418020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Proteinase inhibitors in plant biotechnology: a review].
    Mosolov VV; Valueva TA
    Prikl Biokhim Mikrobiol; 2008; 44(3):261-9. PubMed ID: 18663947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding.
    Hammond-Kosack KE; Parker JE
    Curr Opin Biotechnol; 2003 Apr; 14(2):177-93. PubMed ID: 12732319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential in vitro and in vivo effect of barley cysteine and serine protease inhibitors on phytopathogenic microorganisms.
    Carrillo L; Herrero I; Cambra I; Sánchez-Monge R; Diaz I; Martinez M
    Plant Physiol Biochem; 2011 Oct; 49(10):1191-200. PubMed ID: 21482127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-level expression and characterization of two serine protease inhibitors from Trichinella spiralis.
    Zhang Z; Mao Y; Li D; Zhang Y; Li W; Jia H; Zheng J; Li L; Lu Y
    Vet Parasitol; 2016 Mar; 219():34-9. PubMed ID: 26921036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development.
    Hartl M; Giri AP; Kaur H; Baldwin IT
    Plant Cell; 2010 Dec; 22(12):4158-75. PubMed ID: 21177479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review.
    Cotabarren J; Lufrano D; Parisi MG; Obregón WD
    Plant Sci; 2020 Mar; 292():110398. PubMed ID: 32005400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi.
    Balasubramanian V; Vashisht D; Cletus J; Sakthivel N
    Biotechnol Lett; 2012 Nov; 34(11):1983-90. PubMed ID: 22850791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementation of intramolecular interactions for structural-functional stability of plant serine proteinase inhibitors.
    Joshi RS; Mishra M; Suresh CG; Gupta VS; Giri AP
    Biochim Biophys Acta; 2013 Nov; 1830(11):5087-94. PubMed ID: 23891708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multiple functions of plant serine protease inhibitors: defense against herbivores and beyond.
    Hartl M; Giri AP; Kaur H; Baldwin IT
    Plant Signal Behav; 2011 Jul; 6(7):1009-11. PubMed ID: 22004998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms.
    Valueva TA; Mosolov VV
    Biochemistry (Mosc); 2004 Nov; 69(11):1305-9. PubMed ID: 15627384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.
    Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y
    Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Protein Quantity and Quality-The Next Level of Plant Molecular Farming.
    Liu H; Timko MP
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorado potato beetle larvae on potato plants expressing a locust proteinase inhibitor.
    Kutas J; Kondrák M; Szenthe B; Patthy A; Bánfalvi Z; Nádasy M; Gráf L; Asbóth B
    Commun Agric Appl Biol Sci; 2004; 69(3):281-7. PubMed ID: 15759425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-pathogen arms races at the molecular level.
    Stahl EA; Bishop JG
    Curr Opin Plant Biol; 2000 Aug; 3(4):299-304. PubMed ID: 10873849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.
    Holaskova E; Galuszka P; Frebort I; Oz MT
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1005-23. PubMed ID: 25784148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herbivore damage-induced production and specific anti-digestive function of serine and cysteine protease inhibitors in tall goldenrod, Solidago altissima L. (Asteraceae).
    Bode RF; Halitschke R; Kessler A
    Planta; 2013 May; 237(5):1287-96. PubMed ID: 23371287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the role of Bowman-Birk serine protease inhibitor in Arabidopsis plants under drought stress.
    Malefo MB; Mathibela EO; Crampton BG; Makgopa ME
    Plant Physiol Biochem; 2020 Apr; 149():286-293. PubMed ID: 32097847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant antifungal proteins and their applications in agriculture.
    Yan J; Yuan SS; Jiang LL; Ye XJ; Ng TB; Wu ZJ
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):4961-81. PubMed ID: 25971197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.