These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 30885129)

  • 1. Organization and evolution of the chalcone synthase gene family in bread wheat and relative species.
    Glagoleva AY; Ivanisenko NV; Khlestkina EK
    BMC Genet; 2019 Mar; 20(Suppl 1):30. PubMed ID: 30885129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional divergence of the Mpc1 genes in wheat and barley.
    Strygina KV; Khlestkina EK
    BMC Evol Biol; 2019 Feb; 19(Suppl 1):45. PubMed ID: 30813913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant.
    Shoeva OY; Khlestkina EK; Berges H; Salina EA
    Gene; 2014 Apr; 538(2):334-41. PubMed ID: 24480448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [MYC gene family in cereals: Transformations during evolution of hexaploid bread wheat and its relatives].
    Strygina KV; Khlestkina EK
    Mol Biol (Mosk); 2017; 51(5):772-779. PubMed ID: 29116063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between homoeologous regulatory and structural genes in allopolyploid genome - a case study in bread wheat.
    Khlestkina EK; Röder MS; Salina EA
    BMC Plant Biol; 2008 Aug; 8():88. PubMed ID: 18700978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.).
    Aramrak A; Kidwell KK; Steber CM; Burke IC
    BMC Genomics; 2015 Oct; 16():844. PubMed ID: 26492960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into structural organization and gene duplication in a 1.75-Mb genomic region harboring the α-gliadin gene family in Aegilops tauschii, the source of wheat D genome.
    Huo N; Dong L; Zhang S; Wang Y; Zhu T; Mohr T; Altenbach S; Liu Z; Dvorak J; Anderson OD; Luo MC; Wang D; Gu YQ
    Plant J; 2017 Nov; 92(4):571-583. PubMed ID: 28857322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Expression of the F3h gene in various wheat organs].
    Shoeva OIu; Khlestkina EK
    Mol Biol (Mosk); 2013; 47(6):1028-30. PubMed ID: 25509865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative sequence analysis of the phytochrome C gene and its upstream region in allohexaploid wheat reveals new data on the evolution of its three constituent genomes.
    Devos KM; Beales J; Ogihara Y; Doust AN
    Plant Mol Biol; 2005 Jul; 58(5):625-41. PubMed ID: 16158239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid evolution of α-gliadin gene family revealed by analyzing Gli-2 locus regions of wild emmer wheat.
    Huo N; Zhu T; Zhang S; Mohr T; Luo MC; Lee JY; Distelfeld A; Altenbach S; Gu YQ
    Funct Integr Genomics; 2019 Nov; 19(6):993-1005. PubMed ID: 31197605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat.
    Faris J; Sirikhachornkit A; Haselkorn R; Gill B; Gornicki P
    Mol Biol Evol; 2001 Sep; 18(9):1720-33. PubMed ID: 11504852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome.
    Sergeeva EM; Shcherban AB; Adonina IG; Nesterov MA; Beletsky AV; Rakitin AL; Mardanov AV; Ravin NV; Salina EA
    BMC Plant Biol; 2017 Nov; 17(Suppl 1):183. PubMed ID: 29143604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmental and tandem chromosome duplications led to divergent evolution of the chalcone synthase gene family in Phalaenopsis orchids.
    Kuo YT; Chao YT; Chen WC; Shih MC; Chang SB
    Ann Bot; 2019 Jan; 123(1):69-77. PubMed ID: 30113635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Identification and Analysis of the
    Liu X; Liu Z; Niu X; Xu Q; Yang L
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31783558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.).
    Li AL; Zhu YF; Tan XM; Wang X; Wei B; Guo HZ; Zhang ZL; Chen XB; Zhao GY; Kong XY; Jia JZ; Mao L
    Plant Mol Biol; 2008 Mar; 66(4):429-43. PubMed ID: 18185910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids.
    Wang Z; Yu Q; Shen W; El Mohtar CA; Zhao X; Gmitter FG
    BMC Plant Biol; 2018 Sep; 18(1):189. PubMed ID: 30208944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.).
    Pont C; Murat F; Confolent C; Balzergue S; Salse J
    Genome Biol; 2011 Dec; 12(12):R119. PubMed ID: 22136458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification and characterization of the GDP-L-galactose phosphorylase gene family in bread wheat.
    Broad RC; Bonneau JP; Beasley JT; Roden S; Philips JG; Baumann U; Hellens RP; Johnson AAT
    BMC Plant Biol; 2019 Nov; 19(1):515. PubMed ID: 31771507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RFLP-based analysis of three RbcS subfamilies in diploid and polyploid species of wheat.
    Galili S; Avivi Y; Millet E; Feldman M
    Mol Gen Genet; 2000 May; 263(4):674-80. PubMed ID: 10852490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization and evolutionary origins of farinin genes in Brachypodium distachyon L.
    Subburaj S; Luo N; Lu X; Li X; Cao H; Hu Y; Li J; Yan Y
    J Appl Genet; 2016 Aug; 57(3):287-303. PubMed ID: 26519166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.