BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 30885135)

  • 41. Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurons after spinal cord injury.
    Broude E; McAtee M; Kelley MS; Bregman BS
    Exp Neurol; 1999 Jan; 155(1):65-78. PubMed ID: 9918706
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The proximity of the lesion to cell bodies determines the free radical risk induced in rat rubrospinal neurons subjected to axonal injury.
    Liu PH; Tsai HY; Chung YW; Wang YJ; Tseng GF
    Anat Embryol (Berl); 2004 Mar; 207(6):439-51. PubMed ID: 14767765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms.
    Geoffroy CG; Meves JM; Zheng B
    Neurosci Lett; 2017 Jun; 652():41-49. PubMed ID: 27818358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compensatory projections of primary sensory fibers in lumbar spinal cord after neonatal thoracic spinal transection in rats.
    Takiguchi M; Atobe Y; Kadota T; Funakoshi K
    Neuroscience; 2015 Sep; 304():349-54. PubMed ID: 26208841
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Retrograde Activation of the Extrinsic Apoptotic Pathway in Spinal-Projecting Neurons after a Complete Spinal Cord Injury in Lampreys.
    Barreiro-Iglesias A; Sobrido-Cameán D; Shifman MI
    Biomed Res Int; 2017; 2017():5953674. PubMed ID: 29333445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term effects of methylprednisolone following transection of adult rat spinal cord.
    Oudega M; Vargas CG; Weber AB; Kleitman N; Bunge MB
    Eur J Neurosci; 1999 Jul; 11(7):2453-64. PubMed ID: 10383635
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.
    Widenfalk J; Lundströmer K; Jubran M; Brene S; Olson L
    J Neurosci; 2001 May; 21(10):3457-75. PubMed ID: 11331375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration.
    Neumann S; Skinner K; Basbaum AI
    Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16848-52. PubMed ID: 16275900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis.
    Gibbs KM; Chittur SV; Szaro BG
    Eur J Neurosci; 2011 Jan; 33(1):9-25. PubMed ID: 21059114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.
    Schaal SM; Kitay BM; Cho KS; Lo TP; Barakat DJ; Marcillo AE; Sanchez AR; Andrade CM; Pearse DD
    Cell Transplant; 2007; 16(3):207-28. PubMed ID: 17503734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
    Nishio T; Kawaguchi S; Fujiwara H
    Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats.
    Lesage F; Brieu N; Dubeau S; Beaumont E
    Neurosci Lett; 2009 Apr; 454(1):105-9. PubMed ID: 19429064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Segmental organization of spinal reflexes mediating autonomic dysreflexia after spinal cord injury.
    Rabchevsky AG
    Prog Brain Res; 2006; 152():265-74. PubMed ID: 16198706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential regenerative ability of sensory and motor neurons.
    Cheah M; Fawcett JW; Haenzi B
    Neurosci Lett; 2017 Jun; 652():35-40. PubMed ID: 27818349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ascending projections of long descending propriospinal tract (LDPT) neurons.
    Skinner RD; Nelson R; Griebel M; Garcia-Rill E
    Brain Res Bull; 1989 Feb; 22(2):253-8. PubMed ID: 2706536
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.
    Jacobi A; Schmalz A; Bareyre FM
    PLoS One; 2014; 9(2):e88449. PubMed ID: 24523897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.