These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 30885322)
21. Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols. Morikawa S; Nakai T; Yasohara Y; Nanba H; Kizaki N; Hasegawa J Biosci Biotechnol Biochem; 2005 Mar; 69(3):544-52. PubMed ID: 15784983 [TBL] [Abstract][Full Text] [Related]
22. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols. Wei P; Gao JX; Zheng GW; Wu H; Zong MH; Lou WY J Biotechnol; 2016 Jul; 230():54-62. PubMed ID: 27211999 [TBL] [Abstract][Full Text] [Related]
23. Enantioselective bioreduction of benzo-fused cyclic ketones with engineered Candida glabrata ketoreductase 1 - a promising synthetic route to ladostigil (TV3326). Ou-Yang J; Zhang W; Qin F; Zuo W; Xu S; Wang Y; Qin B; You S; Jia X Org Biomol Chem; 2017 Sep; 15(35):7374-7379. PubMed ID: 28848953 [TBL] [Abstract][Full Text] [Related]
24. Ketoreductase catalyzed stereoselective bioreduction of α-nitro ketones. Wang Z; Wu X; Li Z; Huang Z; Chen F Org Biomol Chem; 2019 Apr; 17(14):3575-3580. PubMed ID: 30900703 [TBL] [Abstract][Full Text] [Related]
25. Structural basis for a highly (S)-enantioselective reductase towards aliphatic ketones with only one carbon difference between side chain. Koesoema AA; Sugiyama Y; Xu Z; Standley DM; Senda M; Senda T; Matsuda T Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9543-9553. PubMed ID: 31482280 [TBL] [Abstract][Full Text] [Related]
26. Hidden Specificities in Enzyme Catalysis: Structural Basis of Substrate Structure-Selectivity Relationship of a Ketoreductase. Häckh M; Lucas X; Marolt M; Leadlay PF; Müller M; Günther S; Lüdeke S Chembiochem; 2019 May; 20(9):1150-1154. PubMed ID: 30600894 [TBL] [Abstract][Full Text] [Related]
27. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH. Takahashi K; Tomita T; Kuzuyama T; Nishiyama M Biochem Biophys Res Commun; 2016 Sep; 478(4):1688-93. PubMed ID: 27601325 [TBL] [Abstract][Full Text] [Related]
28. Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme-substrate docking studies. Zhu D; Yang Y; Buynak JD; Hua L Org Biomol Chem; 2006 Jul; 4(14):2690-5. PubMed ID: 16826293 [TBL] [Abstract][Full Text] [Related]
29. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1. Fukuda Y; Sakuraba H; Araki T; Ohshima T; Yoneda K Enzyme Microb Technol; 2016 Sep; 91():17-25. PubMed ID: 27444325 [TBL] [Abstract][Full Text] [Related]
30. Scalable biocatalytic synthesis of optically pure ethyl (R)-2-hydroxy-4-phenylbutyrate using a recombinant E. coli with high catalyst yield. Ni Y; Su Y; Li H; Zhou J; Sun Z J Biotechnol; 2013 Dec; 168(4):493-8. PubMed ID: 24120725 [TBL] [Abstract][Full Text] [Related]
31. Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase. Quaye O; Lountos GT; Fan F; Orville AM; Gadda G Biochemistry; 2008 Jan; 47(1):243-56. PubMed ID: 18072756 [TBL] [Abstract][Full Text] [Related]
32. Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins. Hölsch K; Weuster-Botz D Biotechnol Appl Biochem; 2010 Aug; 56(4):131-40. PubMed ID: 20590527 [TBL] [Abstract][Full Text] [Related]
33. Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Itoh N; Matsuda M; Mabuchi M; Dairi T; Wang J Eur J Biochem; 2002 May; 269(9):2394-402. PubMed ID: 11985623 [TBL] [Abstract][Full Text] [Related]
34. The ternary complex structure of d-mandelate dehydrogenase with NADH and anilino(oxo)acetate. Furukawa N; Miyanaga A; Nakajima M; Taguchi H Biochem Biophys Res Commun; 2017 May; 486(3):665-670. PubMed ID: 28327357 [TBL] [Abstract][Full Text] [Related]
35. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis. Jakoblinnert A; van den Wittenboer A; Shivange AV; Bocola M; Heffele L; Ansorge-Schumacher M; Schwaneberg U J Biotechnol; 2013 May; 165(1):52-62. PubMed ID: 23471075 [TBL] [Abstract][Full Text] [Related]
36. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity. Johnson AR; Dekker EE Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838 [TBL] [Abstract][Full Text] [Related]
37. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol. Liu X; Bastian S; Snow CD; Brustad EM; Saleski TE; Xu JH; Meinhold P; Arnold FH J Biotechnol; 2012 Dec; 164(2):188-95. PubMed ID: 22974724 [TBL] [Abstract][Full Text] [Related]
38. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones. Nealon CM; Welsh TP; Kim CS; Phillips RS Arch Biochem Biophys; 2016 Sep; 606():151-6. PubMed ID: 27495738 [TBL] [Abstract][Full Text] [Related]
39. Reversal of Regioselectivity in Zinc-Dependent Medium-Chain Alcohol Dehydrogenase from Rhodococcus erythropolis toward Octanone Derivatives. Dhoke GV; Ensari Y; Hacibaloglu DY; Gärtner A; Ruff AJ; Bocola M; Davari MD Chembiochem; 2020 Oct; 21(20):2957-2965. PubMed ID: 32415803 [TBL] [Abstract][Full Text] [Related]
40. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis. Chen R; Deng J; Lin J; Yin X; Xie T; Yang S; Wei D Biotechnol Appl Biochem; 2016 Jul; 63(4):465-70. PubMed ID: 25989134 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]