BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30885323)

  • 21. Guided evolution of enzymes with new substrate specificities.
    el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ
    J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological characterization of D-lactate dehydrogenase responsible for high-yield production of D-phenyllactic acid in Sporolactobacillus inulinus.
    Cheng YY; Park TH; Seong H; Kim TJ; Han NS
    Microb Biotechnol; 2022 Nov; 15(11):2717-2729. PubMed ID: 35921426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic preparation of D-phenyllactic acid at high space-time yield with a novel phenylpyruvate reductase identified from Lactobacillus sp. CGMCC 9967.
    Xu GC; Zhang LL; Ni Y
    J Biotechnol; 2016 Mar; 222():29-37. PubMed ID: 26712480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a specific phenyllactate dehydrogenase by peptide loop exchange on the Bacillus stearothermophilus lactate dehydrogenase framework.
    Wilks HM; Moreton KM; Halsall DJ; Hart KW; Sessions RD; Clarke AR; Holbrook JJ
    Biochemistry; 1992 Sep; 31(34):7802-6. PubMed ID: 1324721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion variants of L-hydroxyisocaproate dehydrogenase. Probing substrate specificity.
    Feil IK; Lerch HP; Schomburg D
    Eur J Biochem; 1994 Aug; 223(3):857-63. PubMed ID: 8055963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly stereoselective biosynthesis of (R)-α-hydroxy carboxylic acids through rationally re-designed mutation of D-lactate dehydrogenase.
    Zheng Z; Sheng B; Gao C; Zhang H; Qin T; Ma C; Xu P
    Sci Rep; 2013 Dec; 3():3401. PubMed ID: 24292439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii.
    Kim S; Gu SA; Kim YH; Kim KJ
    Int J Biol Macromol; 2014 Jul; 68():151-7. PubMed ID: 24794195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis.
    Gu SA; Jun C; Joo JC; Kim S; Lee SH; Kim YH
    Enzyme Microb Technol; 2014 May; 58-59():29-35. PubMed ID: 24731822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase.
    Vinals C; Depiereux E; Feytmans E
    Biochem Biophys Res Commun; 1993 Apr; 192(1):182-8. PubMed ID: 8476420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Newly Determined Member of the
    Gao X; Zhang Z; Zhang Y; Li Y; Zhu H; Wang S; Li C
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341677
    [No Abstract]   [Full Text] [Related]  

  • 32. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM.
    Zheng Z; Ma C; Gao C; Li F; Qin J; Zhang H; Wang K; Xu P
    PLoS One; 2011 Apr; 6(4):e19030. PubMed ID: 21533054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ternary complex structure of d-mandelate dehydrogenase with NADH and anilino(oxo)acetate.
    Furukawa N; Miyanaga A; Nakajima M; Taguchi H
    Biochem Biophys Res Commun; 2017 May; 486(3):665-670. PubMed ID: 28327357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate Specificity and Allosteric Regulation of a D-Lactate Dehydrogenase from a Unicellular Cyanobacterium are Altered by an Amino Acid Substitution.
    Ito S; Takeya M; Osanai T
    Sci Rep; 2017 Nov; 7(1):15052. PubMed ID: 29118438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a novel glyoxylate reductase supports phylogeny-based enzymatic substrate specificity prediction.
    Fauvart M; Braeken K; Daniels R; Vos K; Ndayizeye M; Noben JP; Robben J; Vanderleyden J; Michiels J
    Biochim Biophys Acta; 2007 Sep; 1774(9):1092-8. PubMed ID: 17693143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular characterization of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II of Acinetobacter calcoaceticus.
    Gillooly DJ; Robertson AG; Fewson CA
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1375-81. PubMed ID: 9494109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Characterization of D-lactate dehydrogenase isozymes from a D-lactic acid producing bacterium Sporolactobacillus inulinus].
    Zhang D; Zheng L; Wu B; He B
    Wei Sheng Wu Xue Bao; 2016 Nov; 56(11):1811-8. PubMed ID: 29741845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Liu L
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2183-91. PubMed ID: 26552798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.
    Valerio F; Di Biase M; Lattanzio VM; Lavermicocca P
    Int J Food Microbiol; 2016 Apr; 222():1-7. PubMed ID: 26827290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase.
    Ferreira P; Hernández-Ortega A; Lucas F; Carro J; Herguedas B; Borrelli KW; Guallar V; Martínez AT; Medina M
    FEBS J; 2015 Aug; 282(16):3091-106. PubMed ID: 25639975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.