BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30885664)

  • 21. Conversion of low-rank coal and sewage sludge into syngas for H
    Ogugua PC; Wang E; Su H; Iurii F; Wang Q; Jinyang Z
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117448-117463. PubMed ID: 37872333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Efficient Transformation of Tar Model Compounds into Hydrogen by a Ni-Co Alloy Nanocatalyst During Tar Steam Reforming.
    Chen J; Liu Y; Chen Z; Yue J; Tian Y; Zheng C; Zhang J
    Environ Sci Technol; 2024 Feb; ():. PubMed ID: 38320954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic pyrolysis of liquor-industry waste: Product and mechanism analysis.
    Zhao Y; Li X; Zhu Y; Li Y; Nan J; Li J; Xu G
    Bioresour Technol; 2024 Feb; 394():130293. PubMed ID: 38184088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomass Source Influence on Hydrogen Production through Pyrolysis and in Line Oxidative Steam Reforming.
    Garcia I; Lopez G; Santamaria L; Fernandez E; Bilbao J; Olazar M; Artetxe M; Amutio M
    ChemSusChem; 2024 May; ():e202400325. PubMed ID: 38742482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of P:Ni Ratio on Methanol Steam Reforming on Nickel Phosphide Catalysts.
    Almithn A
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global Vision of the Reaction and Deactivation Routes in the Ethanol Steam Reforming on a Catalyst Derived from a Ni-Al Spinel.
    Iglesias-Vázquez S; Valecillos J; Remiro A; Valle B; Bilbao J; Gayubo AG
    Energy Fuels; 2024 Apr; 38(8):7033-7048. PubMed ID: 38654764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Efficient Conversion of Greenhouse Gases Using a Quadruple Mixed Oxide-Supported Nickel Catalyst in Reforming Process.
    Phichairatanaphong O; Yigit N; Rupprechter G; Chareonpanich M; Donphai W
    Ind Eng Chem Res; 2023 Oct; 62(40):16254-16267. PubMed ID: 37841414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CO
    Zhang X; Jiang Y; Kong G; Liu Q; Zhang G; Wang K; Cao T; Cheng Q; Zhang Z; Ji G; Han L
    J Hazard Mater; 2023 Oct; 460():132500. PubMed ID: 37708645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prefeasibility analysis of biomass gasification and electrolysis for hydrogen production.
    Garcia-Vallejo MC; Cardona Alzate CA
    Environ Res; 2024 May; 248():118003. PubMed ID: 38163544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review.
    Lakhtaria P; Ribeirinha P; Huhtinen W; Viik S; Sousa J; Mendes A
    Open Res Eur; 2021; 1():81. PubMed ID: 37645145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomass gasification ash reutilization: Recirculation reusability and mechanism analysis.
    Guo Q; Yan B; Hu Y; Cheng Z; Zhang R; Chen G; Hou L
    Waste Manag; 2022 Dec; 154():64-73. PubMed ID: 36209719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomass gasification, catalytic technologies and energy integration for production of circular methanol: New horizons for industry decarbonisation.
    Bobadilla LF; Azancot L; González-Castaño M; Ruíz-López E; Pastor-Pérez L; Durán-Olivencia FJ; Ye R; Chong K; Blanco-Sánchez PH; Wu Z; Reina TR; Odriozola JA
    J Environ Sci (China); 2024 Jun; 140():306-318. PubMed ID: 38331510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CO
    Beldova DA; Medvedev AA; Kustov AL; Mashkin MY; Kirsanov VY; Vysotskaya IV; Sokolovskiy PV; Kustov LM
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of the presence of water on sulfur removal capacity during H
    Dogan C; Martini S; Retschitzegger S; Çetin B
    Environ Technol; 2023 Nov; 44(25):3803-3812. PubMed ID: 35499395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring the Unmeasurable by IR Spectroscopy: Carbon Deposition Kinetics in Dry Reforming of Methane.
    Ren J; Lee AC; Cheng K; Li M; Chen Y
    Chemphyschem; 2018 Apr; ():. PubMed ID: 29664228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling experimental with simulation studies into the impact factors and reaction mechanism of sawdust char pressured hydrogasification on K-modified transition metal composite catalysts.
    Jiao W; Ding X; Yan S; Yan Z; Jiao W; Wang Z; Fang Y
    Bioresour Technol; 2024 Mar; 395():130399. PubMed ID: 38286165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on the mechanism and reaction characteristics of metal-supported phosphogypsum as oxygen carrier in a chemical looping gasification application.
    Yang J; Ren Y; Chen S; Lu J
    J Environ Sci (China); 2024 Apr; 138():428-438. PubMed ID: 38135408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distributed electrified heating for efficient hydrogen production.
    Yang H; Nuran Zaini I; Pan R; Jin Y; Wang Y; Li L; Caballero JJB; Shi Z; Subasi Y; Nurdiawati A; Wang S; Shen Y; Wang T; Wang Y; Sandström L; Jönsson PG; Yang W; Han T
    Nat Commun; 2024 May; 15(1):3868. PubMed ID: 38719793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZnO is a CO(2)-selective steam reforming catalyst.
    Lorenz H; Friedrich M; Armbrüster M; Klötzer B; Penner S
    J Catal; 2013 Jan; 297(C):151-154. PubMed ID: 23335817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biogas Reforming to Syngas: A Review.
    Zhao X; Joseph B; Kuhn J; Ozcan S
    iScience; 2020 May; 23(5):101082. PubMed ID: 32380422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.