These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30885687)

  • 1. Abnormal synchronization patterns in the electrical stimulation-contractile response coupling decrease with noise.
    Peña-Romo A; Ríos A; Escalante BA; Rodríguez-González J
    Biosystems; 2019 Jun; 180():63-70. PubMed ID: 30885687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise enhanced the electrical stimulation-contractile response coupling in isolated mouse heart.
    Peña-Romo A; Gámez-Méndez AM; Ríos A; Escalante BA; Rodríguez-González J
    Int J Cardiol; 2016 Oct; 221():155-60. PubMed ID: 27400314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Simulation of coupling behavior of heart rhythms for study of phase synchronization].
    Geue D; van Leeuwen P; Lange S; Grönemeyer D
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():229-32. PubMed ID: 12451824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Rhythm assimilation in the isolated canine heart under isovolumic conditions].
    Gur'ianov MI
    Ross Fiziol Zh Im I M Sechenova; 2002 Mar; 88(3):363-71. PubMed ID: 12013731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organization of the heartbeat as coordination among ventricular myocardial cells through mechano-electrical feedback.
    Hori S; Yamaguchi Y; Shimizu H
    Biol Cybern; 1999 Jan; 80(1):1-10. PubMed ID: 9951395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enkephalin inhibits vagal control of heart rate, contractile force and coronary blood flow in the canine heart in vivo.
    Caffrey JL
    J Auton Nerv Syst; 1999 May; 76(2-3):75-82. PubMed ID: 10412830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling of electromechanical propagation in the helical ventricular anatomy of the heart.
    Marcé-Nogué J; Fortuny G; Ballester-Rodés M; Carreras F; Roure F
    Comput Biol Med; 2013 Nov; 43(11):1698-703. PubMed ID: 24209915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate-dependent electrical, contractile and restitution properties of isolated left ventricular myocytes in guinea-pig hypertrophy.
    Davey P; Bryant S; Hart G
    Acta Physiol Scand; 2001 Jan; 171(1):17-28. PubMed ID: 11350259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Differential neural influences on the heart rate and contractile force in different reflex reactions].
    Alipov NN; Izrail'tian IM; Lepetiukh OP; Sokolov AV
    Fiziol Zh SSSR Im I M Sechenova; 1992 Oct; 78(10):63-9. PubMed ID: 1302701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-locking patterns in a resonate and fire neural model with periodic drive.
    Marangio L; Galatolo S; Fronzoni L; Chillemi S; Di Garbo A
    Biosystems; 2019 Oct; 184():103992. PubMed ID: 31323255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A view on the cardiac rhythm control: intracardial regulation].
    Nozdrachev AD; Kotel'nikov SA; Mazhara IuP; Naumov KM
    Fiziol Cheloveka; 2005; 31(2):116-29. PubMed ID: 15889829
    [No Abstract]   [Full Text] [Related]  

  • 12. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conduction and contraction properties of human iPS cell-derived cardiomyocytes: analysis by motion field imaging compared with the guinea-pig isolated heart model.
    Isobe T; Honda M; Komatsu R; Tabo M
    J Toxicol Sci; 2018; 43(8):493-506. PubMed ID: 30078835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-frequency relations in hypertrophic heart muscle: a mathematical model for excitation-contraction coupling.
    Mukumov MR; Isaeva SA; Belaya ML; Pratusevich VR
    Gen Physiol Biophys; 1992 Dec; 11(6):523-33. PubMed ID: 1292952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of α
    Ziyatdinova NI; Kuptsova AM; Faskhutdinov LI; Zefirov AL; Zefirov TL
    Bull Exp Biol Med; 2018 Sep; 165(5):593-596. PubMed ID: 30242585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of activation time on contraction force of myocardial tissue: a simulation study.
    Lu J; Nishi T; Ashihara T; Schneider NS; Amano A; Matsuda T; Kotera H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2900-3. PubMed ID: 17946149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase synchronization in noise-driven bursting neurons.
    Lang X; Lu Q; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021909. PubMed ID: 20866839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.
    Negroni JA; Morotti S; Lascano EC; Gomes AV; Grandi E; Puglisi JL; Bers DM
    J Mol Cell Cardiol; 2015 Apr; 81():162-75. PubMed ID: 25724724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the force-frequency effect on myocardial contractility by adrenergic stimulation in conscious dogs.
    Kambayashi M; Miura T; Oh BH; Rockman HA; Murata K; Ross J
    Circulation; 1992 Aug; 86(2):572-80. PubMed ID: 1353420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Assimilation of rhythm by the isolated dog heart during gradual raising of stimulation frequency].
    Gur'ianov MI
    Ross Fiziol Zh Im I M Sechenova; 2003 Dec; 89(12):1529-37. PubMed ID: 14870491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.