BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30885922)

  • 1. Novel
    Al-Hashimi H; Chiarelli T; Lundquist EA; Buechner M
    G3 (Bethesda); 2019 May; 9(5):1339-1353. PubMed ID: 30885922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans.
    Grussendorf KA; Trezza CJ; Salem AT; Al-Hashimi H; Mattingly BC; Kampmeyer DE; Khan LA; Hall DH; Göbel V; Ackley BD; Buechner M
    Genetics; 2016 Aug; 203(4):1789-806. PubMed ID: 27334269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in
    Al-Hashimi H; Hall DH; Ackley BD; Lundquist EA; Buechner M
    Genetics; 2018 Oct; 210(2):637-652. PubMed ID: 29945901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules.
    Mattingly BC; Buechner M
    Dev Biol; 2011 Nov; 359(1):59-72. PubMed ID: 21889936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis.
    Yang Z; Mattingly BC; Hall DH; Ackley BD; Buechner M
    J Cell Biol; 2020 Nov; 219(11):. PubMed ID: 32860501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the ELAV homologue EXC-7 in the development of the Caenorhabditis elegans excretory canals.
    Fujita M; Hawkinson D; King KV; Hall DH; Sakamoto H; Buechner M
    Dev Biol; 2003 Apr; 256(2):290-301. PubMed ID: 12679103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRIP homologues maintain apical cytoskeleton to regulate tubule size in C. elegans.
    Tong X; Buechner M
    Dev Biol; 2008 May; 317(1):225-33. PubMed ID: 18384766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abelson interactor-1 (ABI-1) interacts with MRL adaptor protein MIG-10 and is required in guided cell migrations and process outgrowth in C. elegans.
    McShea MA; Schmidt KL; Dubuke ML; Baldiga CE; Sullender ME; Reis AL; Zhang S; O'Toole SM; Jeffers MC; Warden RM; Kenney AH; Gosselin J; Kuhlwein M; Hashmi SK; Stringham EG; Ryder EF
    Dev Biol; 2013 Jan; 373(1):1-13. PubMed ID: 23022657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons.
    Shaye DD; Greenwald I
    Dev Cell; 2015 Mar; 32(6):743-55. PubMed ID: 25771894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient receptor potential melastatin (TRPM) channels mediate clozapine-induced phenotypes in Caenorhabditis elegans.
    Wang X; Piccolo CW; Cohen BM; Buttner EA
    J Neurogenet; 2014; 28(1-2):86-97. PubMed ID: 24564792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the novel excretory cell expressed ECP-1 protein and its proposed ECP-1/IFC-2 fusion protein EXC-2 in the nematode Caenorhabditis elegans.
    Karabinos A; Schulze E; Baumeister R
    Gene Expr Patterns; 2019 Dec; 34():119061. PubMed ID: 31207388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metazoan-specific C-terminal motif in EXC-4 and Gα-Rho/Rac signaling regulate cell outgrowth during tubulogenesis in C. elegans.
    Arena AF; Escudero J; Shaye DD
    Development; 2022 Dec; 149(24):. PubMed ID: 36398726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C. elegans Excretory Canal as a Model for Intracellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis in a Single Cell: labeling by GFP-fusions, RNAi Interaction Screen and Imaging.
    Zhang N; Membreno E; Raj S; Zhang H; Khan LA; Gobel V
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 28994812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Caenorhabditis elegans homolog of FGD1, the human Cdc42 GEF gene responsible for faciogenital dysplasia, is critical for excretory cell morphogenesis.
    Gao J; Estrada L; Cho S; Ellis RE; Gorski JL
    Hum Mol Genet; 2001 Dec; 10(26):3049-62. PubMed ID: 11751687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell.
    Armenti ST; Chan E; Nance J
    Dev Biol; 2014 Oct; 394(1):110-21. PubMed ID: 25102190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A putative GDP-GTP exchange factor is required for development of the excretory cell in Caenorhabditis elegans.
    Suzuki N; Buechner M; Nishiwaki K; Hall DH; Nakanishi H; Takai Y; Hisamoto N; Matsumoto K
    EMBO Rep; 2001 Jun; 2(6):530-5. PubMed ID: 11415987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pathway for unicellular tube extension depending on the lymphatic vessel determinant Prox1 and on osmoregulation.
    Kolotuev I; Hyenne V; Schwab Y; Rodriguez D; Labouesse M
    Nat Cell Biol; 2013 Feb; 15(2):157-68. PubMed ID: 23334499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The small GTPase ARF-1.2 is a regulator of unicellular tube formation in Caenorhabditis elegans.
    Kage-Nakadai E; Sun S; Iwata S; Yoshina S; Nishikawa Y; Mitani S
    J Physiol Sci; 2019 Jan; 69(1):47-56. PubMed ID: 29704149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in
    Zhao Y; Holmgren BT; Hinas A
    RNA; 2017 Mar; 23(3):297-307. PubMed ID: 27974622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tubes and the single C. elegans excretory cell.
    Buechner M
    Trends Cell Biol; 2002 Oct; 12(10):479-84. PubMed ID: 12441252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.