BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 30885933)

  • 21.
    Bradshaw JL; Caballero AR; Bierdeman MA; Adams KV; Pipkins HR; Tang A; O'Callaghan RJ; McDaniel LS
    mSphere; 2018; 3(3):. PubMed ID: 29720526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung.
    O'Brien S; Fothergill JL
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of D-amino acid dehydrogenase on virulence factor production by a Pseudomonas aeruginosa.
    Oliver KE; Silo-Suh L
    Can J Microbiol; 2013 Sep; 59(9):598-603. PubMed ID: 24011342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways.
    Hassett DJ; Sutton MD; Schurr MJ; Herr AB; Caldwell CC; Matu JO
    Trends Microbiol; 2009 Mar; 17(3):130-8. PubMed ID: 19231190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exogenous Alginate Protects Staphylococcus aureus from Killing by Pseudomonas aeruginosa.
    Price CE; Brown DG; Limoli DH; Phelan VV; O'Toole GA
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 31792010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrite reductase is critical for Pseudomonas aeruginosa survival during co-infection with the oral commensal Streptococcus parasanguinis.
    Scoffield JA; Wu H
    Microbiology (Reading); 2016 Feb; 162(2):376-383. PubMed ID: 26673783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudomonas aeruginosa Proteome under Hypoxic Stress Conditions Mimicking the Cystic Fibrosis Lung.
    Kamath KS; Krisp C; Chick J; Pascovici D; Gygi SP; Molloy MP
    J Proteome Res; 2017 Oct; 16(10):3917-3928. PubMed ID: 28832155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Staphylococcus aureus and Pseudomonas aeruginosa Isolates from the Same Cystic Fibrosis Respiratory Sample Coexist in Coculture.
    Bernardy EE; Raghuram V; Goldberg JB
    Microbiol Spectr; 2022 Aug; 10(4):e0097622. PubMed ID: 35867391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooperativity between Stenotrophomonas maltophilia and Pseudomonas aeruginosa during Polymicrobial Airway Infections.
    McDaniel MS; Schoeb T; Swords WE
    Infect Immun; 2020 Mar; 88(4):. PubMed ID: 31932329
    [No Abstract]   [Full Text] [Related]  

  • 30. Calprotectin-Mediated Zinc Chelation Inhibits Pseudomonas aeruginosa Protease Activity in Cystic Fibrosis Sputum.
    Vermilyea DM; Crocker AW; Gifford AH; Hogan DA
    J Bacteriol; 2021 Jun; 203(13):e0010021. PubMed ID: 33927050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Help, hinder, hide and harm: what can we learn from the interactions between
    Limoli DH; Hoffman LR
    Thorax; 2019 Jul; 74(7):684-692. PubMed ID: 30777898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication.
    Duan K; Dammel C; Stein J; Rabin H; Surette MG
    Mol Microbiol; 2003 Dec; 50(5):1477-91. PubMed ID: 14651632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Great phenotypic and genetic variation among successive chronic Pseudomonas aeruginosa from a cystic fibrosis patient.
    Lozano C; Azcona-Gutiérrez JM; Van Bambeke F; Sáenz Y
    PLoS One; 2018; 13(9):e0204167. PubMed ID: 30212579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by
    Marteyn BS; Burgel PR; Meijer L; Witko-Sarsat V
    Front Cell Infect Microbiol; 2017; 7():243. PubMed ID: 28713772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability.
    Filkins LM; Hampton TH; Gifford AH; Gross MJ; Hogan DA; Sogin ML; Morrison HG; Paster BJ; O'Toole GA
    J Bacteriol; 2012 Sep; 194(17):4709-17. PubMed ID: 22753064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections.
    Winstanley C; O'Brien S; Brockhurst MA
    Trends Microbiol; 2016 May; 24(5):327-337. PubMed ID: 26946977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation.
    Scoffield JA; Duan D; Zhu F; Wu H
    PLoS Pathog; 2017 Apr; 13(4):e1006300. PubMed ID: 28448633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection.
    Baldan R; Cigana C; Testa F; Bianconi I; De Simone M; Pellin D; Di Serio C; Bragonzi A; Cirillo DM
    PLoS One; 2014; 9(3):e89614. PubMed ID: 24603807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response.
    Ciofu O
    APMIS Suppl; 2003; (116):1-47. PubMed ID: 14692154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: are we dosing high enough?
    Bos AC; van Holsbeke C; de Backer JW; van Westreenen M; Janssens HM; Vos WG; Tiddens HA
    PLoS One; 2015; 10(3):e0118454. PubMed ID: 25734630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.