BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 30885933)

  • 41. The Streptococcus milleri group in chronic obstructive pulmonary disease.
    Navratilova L; Bardon J; Novotny R; Zatloukal J; Jakubec P; Kolek V; Zapalka M; Kopriva F; Prochazkova P; Raclavsky V
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2016 Sep; 160(3):378-84. PubMed ID: 27132809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung.
    Hogardt M; Heesemann J
    Curr Top Microbiol Immunol; 2013; 358():91-118. PubMed ID: 22311171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Does ivacaftor interfere with the antimicrobial activity of commonly used antibiotics against Pseudomonas aeruginosa?-Results of an in vitro study.
    Millar BC; Rendall JC; Downey DG; Moore JE
    J Clin Pharm Ther; 2018 Dec; 43(6):836-843. PubMed ID: 29959786
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus.
    Yung DBY; Sircombe KJ; Pletzer D
    Mol Microbiol; 2021 Jul; 116(1):1-15. PubMed ID: 33576132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients.
    Sibley CD; Parkins MD; Rabin HR; Duan K; Norgaard JC; Surette MG
    Proc Natl Acad Sci U S A; 2008 Sep; 105(39):15070-5. PubMed ID: 18812504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients.
    Ciofu O; Tolker-Nielsen T; Jensen PØ; Wang H; Høiby N
    Adv Drug Deliv Rev; 2015 May; 85():7-23. PubMed ID: 25477303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Availability of Zinc Impacts Interactions between Streptococcus sanguinis and Pseudomonas aeruginosa in Coculture.
    Li K; Gifford AH; Hampton TH; O'Toole GA
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31685535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developing a model for cystic fibrosis sociomicrobiology based on antibiotic and environmental stress.
    Lopes SP; Azevedo NF; Pereira MO
    Int J Med Microbiol; 2017 Dec; 307(8):460-470. PubMed ID: 29033313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis.
    Stefani S; Campana S; Cariani L; Carnovale V; Colombo C; Lleo MM; Iula VD; Minicucci L; Morelli P; Pizzamiglio G; Taccetti G
    Int J Med Microbiol; 2017 Sep; 307(6):353-362. PubMed ID: 28754426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acute polymicrobial airway infections: analysis in cystic fibrosis mice.
    Lindgren NR; McDaniel MS; Novak L; Swords WE
    Microbiology (Reading); 2023 Jan; 169(1):. PubMed ID: 36748431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Macrolide and clindamycin resistance in Streptococcus milleri group isolates from the airways of cystic fibrosis patients.
    Grinwis ME; Sibley CD; Parkins MD; Eshaghurshan CS; Rabin HR; Surette MG
    Antimicrob Agents Chemother; 2010 Jul; 54(7):2823-9. PubMed ID: 20404127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unveiling the early events of Pseudomonas aeruginosa adaptation in cystic fibrosis airway environment using a long-term in vitro maintenance.
    Sousa AM; Monteiro R; Pereira MO
    Int J Med Microbiol; 2018 Dec; 308(8):1053-1064. PubMed ID: 30377031
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis.
    Palmer GC; Whiteley M
    Microbiol Spectr; 2015 Aug; 3(4):. PubMed ID: 26350318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface.
    Malhotra S; Hayes D; Wozniak DJ
    Clin Microbiol Rev; 2019 Jun; 32(3):. PubMed ID: 31142499
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Kiedrowski MR; Gaston JR; Kocak BR; Coburn SL; Lee S; Pilewski JM; Myerburg MM; Bomberger JM
    mSphere; 2018 Aug; 3(4):. PubMed ID: 30111629
    [No Abstract]   [Full Text] [Related]  

  • 56. Characterization of Hypermutator Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis in Australia.
    Rees VE; Deveson Lucas DS; López-Causapé C; Huang Y; Kotsimbos T; Bulitta JB; Rees MC; Barugahare A; Peleg AY; Nation RL; Oliver A; Boyce JD; Landersdorfer CB
    Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30745381
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glucosylceramide Critically Contributes to the Host Defense of Cystic Fibrosis Lungs.
    Kovacic B; Sehl C; Wilker B; Kamler M; Gulbins E; Becker KA
    Cell Physiol Biochem; 2017; 41(3):1208-1218. PubMed ID: 28427052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbiology of lung infection in cystic fibrosis.
    Govan JR; Nelson JW
    Br Med Bull; 1992 Oct; 48(4):912-30. PubMed ID: 1281036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An oral commensal attenuates
    Baty JJ; Stoner SN; McDaniel MS; Huffines JT; Edmonds SE; Evans NJ; Novak L; Scoffield JA
    Microbiol Spectr; 2023 Dec; 11(6):e0219823. PubMed ID: 37800950
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Desulfurization of mucin by Pseudomonas aeruginosa: influence of sulfate in the lungs of cystic fibrosis patients.
    Robinson CV; Elkins MR; Bialkowski KM; Thornton DJ; Kertesz MA
    J Med Microbiol; 2012 Dec; 61(Pt 12):1644-1653. PubMed ID: 22918866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.