BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30886098)

  • 1. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon.
    Zhang X; Vyatskikh A; Gao H; Greer JR; Li X
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6665-6672. PubMed ID: 30886098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical strength and rubber-like behaviour in micro-sized pyrolytic carbon.
    Zhang X; Zhong L; Mateos A; Kudo A; Vyatskikh A; Gao H; Greer JR; Li X
    Nat Nanotechnol; 2019 Aug; 14(8):762-769. PubMed ID: 31285610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices.
    Zhang X; Wang Y; Ding B; Li X
    Small; 2020 Apr; 16(15):e1902842. PubMed ID: 31483576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoarchitected metal/ceramic interpenetrating phase composites.
    Bauer J; Sala-Casanovas M; Amiri M; Valdevit L
    Sci Adv; 2022 Aug; 8(33):eabo3080. PubMed ID: 35977008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaching theoretical strength in glassy carbonĀ nanolattices.
    Bauer J; Schroer A; Schwaiger R; Kraft O
    Nat Mater; 2016 Apr; 15(4):438-43. PubMed ID: 26828314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices.
    Dou NG; Jagt RA; Portela CM; Greer JR; Minnich AJ
    Nano Lett; 2018 Aug; 18(8):4755-4761. PubMed ID: 30022671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Fabrication of High-Performance Thin-Shell Oxide Nanoarchitected Materials
    Bae G; Jang D; Jeon S
    ACS Nano; 2021 Mar; 15(3):3960-3970. PubMed ID: 33591718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metasurface-Enabled Holographic Lithography for Impact-Absorbing Nanoarchitected Sheets.
    Kagias M; Lee S; Friedman AC; Zheng T; Veysset D; Faraon A; Greer JR
    Adv Mater; 2023 Mar; 35(13):e2209153. PubMed ID: 36649979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastically Isotropic Truss-Plate-Hybrid Hierarchical Microlattices with Enhanced Modulus and Strength.
    Wang Y; Xu F; Gao H; Li X
    Small; 2023 May; 19(18):e2206024. PubMed ID: 36748308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroscale Fabrication of Lightweight and Strong Porous Carbon Foams through Template-Coating Pair Design.
    Suresh A; Rowan SJ; Liu C
    Adv Mater; 2023 Mar; 35(9):e2206416. PubMed ID: 36527732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-off.
    Zhang X; Yao J; Liu B; Yan J; Lu L; Li Y; Gao H; Li X
    Nano Lett; 2018 Jul; 18(7):4247-4256. PubMed ID: 29901403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive manufacturing of 3D nano-architected metals.
    Vyatskikh A; Delalande S; Kudo A; Zhang X; Portela CM; Greer JR
    Nat Commun; 2018 Feb; 9(1):593. PubMed ID: 29426947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices.
    Meza LR; Das S; Greer JR
    Science; 2014 Sep; 345(6202):1322-6. PubMed ID: 25214624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supersonic impact resilience of nanoarchitected carbon.
    Portela CM; Edwards BW; Veysset D; Sun Y; Nelson KA; Kochmann DM; Greer JR
    Nat Mater; 2021 Nov; 20(11):1491-1497. PubMed ID: 34168332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive Manufacturing of High-Refractive-Index, Nanoarchitected Titanium Dioxide for 3D Dielectric Photonic Crystals.
    Vyatskikh A; Ng RC; Edwards B; Briggs RM; Greer JR
    Nano Lett; 2020 May; 20(5):3513-3520. PubMed ID: 32338926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical nanolattices printed using nanocluster-based photoresists.
    Li Q; Kulikowski J; Doan D; Tertuliano OA; Zeman CJ; Wang MM; Schatz GC; Gu XW
    Science; 2022 Nov; 378(6621):768-773. PubMed ID: 36395243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanolattices: An Emerging Class of Mechanical Metamaterials.
    Bauer J; Meza LR; Schaedler TA; Schwaiger R; Zheng X; Valdevit L
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28873250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plate-nanolattices at the theoretical limit of stiffness and strength.
    Crook C; Bauer J; Guell Izard A; Santos de Oliveira C; Martins de Souza E Silva J; Berger JB; Valdevit L
    Nat Commun; 2020 Mar; 11(1):1579. PubMed ID: 32221283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Parameters for Subwavelength Transparent Conductive Nanolattices.
    Diaz Leon JJ; Feigenbaum E; Kobayashi NP; Han TY; Hiszpanski AM
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35360-35367. PubMed ID: 28960951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.