BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30886178)

  • 1. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs.
    Okamoto S; Amaishi Y; Maki I; Enoki T; Mineno J
    Sci Rep; 2019 Mar; 9(1):4811. PubMed ID: 30886178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein.
    Kagita A; Lung MSY; Xu H; Kita Y; Sasakawa N; Iguchi T; Ono M; Wang XH; Gee P; Hotta A
    Stem Cell Reports; 2021 Apr; 16(4):985-996. PubMed ID: 33711268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.
    Rivera-Torres N; Banas K; Bialk P; Bloh KM; Kmiec EB
    PLoS One; 2017; 12(1):e0169350. PubMed ID: 28052104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation.
    Edmondson C; Zhou Q; Liu X
    BMC Biotechnol; 2021 Jul; 21(1):45. PubMed ID: 34315458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems.
    Bialk P; Rivera-Torres N; Strouse B; Kmiec EB
    PLoS One; 2015; 10(6):e0129308. PubMed ID: 26053390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles.
    Lanza DG; Gaspero A; Lorenzo I; Liao L; Zheng P; Wang Y; Deng Y; Cheng C; Zhang C; Seavitt JR; DeMayo FJ; Xu J; Dickinson ME; Beaudet AL; Heaney JD
    BMC Biol; 2018 Jun; 16(1):69. PubMed ID: 29925370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving homology-directed repair efficiency in human stem cells.
    Skarnes WC; Pellegrino E; McDonough JA
    Methods; 2019 Jul; 164-165():18-28. PubMed ID: 31216442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas.
    Akella S; Ma X; Bacova R; Harmer ZP; Kolackova M; Wen X; Wright DA; Spalding MH; Weeks DP; Cerutti H
    Plant Physiol; 2021 Dec; 187(4):2637-2655. PubMed ID: 34618092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of factors that improve homologous direct repair (HDR) efficiency in CRISPR/Cas9 technique.
    Di Stazio M; Foschi N; Athanasakis E; Gasparini P; d'Adamo AP
    PLoS One; 2021; 16(3):e0247603. PubMed ID: 33667229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells.
    Xu H; Kita Y; Bang U; Gee P; Hotta A
    STAR Protoc; 2021 Dec; 2(4):100965. PubMed ID: 34825222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Generation of Knock-In Zebrafish Models for Inherited Disorders Using CRISPR-Cas9 Ribonucleoprotein Complexes.
    de Vrieze E; de Bruijn SE; Reurink J; Broekman S; van de Riet V; Aben M; Kremer H; van Wijk E
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing the Genome of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes.
    Bruntraeger M; Byrne M; Long K; Bassett AR
    Methods Mol Biol; 2019; 1961():153-183. PubMed ID: 30912046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted Transgenic Mice Using CRISPR /Cas9 Technology.
    El Marjou F; Jouhanneau C; Krndija D
    Methods Mol Biol; 2021; 2214():125-141. PubMed ID: 32944907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Efficient Knock-in Mouse and Human Pluripotent Stem Cells Using CRISPR-Cas9.
    Anzai T; Hara H; Chanthra N; Sadahiro T; Ieda M; Hanazono Y; Uosaki H
    Methods Mol Biol; 2021; 2320():247-259. PubMed ID: 34302663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing.
    Onuma H; Sato Y; Harashima H
    J Control Release; 2023 Mar; 355():406-416. PubMed ID: 36773957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-Guided
    Ittiprasert W; Chatupheeraphat C; Mann VH; Li W; Miller A; Ogunbayo T; Tran K; Alrefaei YN; Mentink-Kane M; Brindley PJ
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Multi-Allelic Genome Editing of Primary Cell Cultures via CRISPR-Cas9 Ribonucleoprotein Nucleofection.
    Hoellerbauer P; Kufeld M; Paddison PJ
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e126. PubMed ID: 32833346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.