BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30886183)

  • 1. Near real-time enumeration of live and dead bacteria using a fibre-based spectroscopic device.
    Ou F; McGoverin C; Swift S; Vanholsbeeck F
    Sci Rep; 2019 Mar; 9(1):4807. PubMed ID: 30886183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy.
    Ou F; McGoverin C; Swift S; Vanholsbeeck F
    Anal Bioanal Chem; 2019 Jun; 411(16):3653-3663. PubMed ID: 31049617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of the Protocol for the LIVE/DEAD
    Robertson J; McGoverin C; Vanholsbeeck F; Swift S
    Front Microbiol; 2019; 10():801. PubMed ID: 31031741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of disruption procedures for enumeration of activated sludge floc bacteria by flow cytometry.
    Falcioni T; Manti A; Boi P; Canonico B; Balsamo M; Papa S
    Cytometry B Clin Cytom; 2006 May; 70(3):149-53. PubMed ID: 16572416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of image-based flow cytometry in bacterial viability analysis using fluorescent probes.
    Pan Y; Kaatz L
    Curr Protoc Microbiol; 2012 Nov; Chapter 2():Unit 2C.5.. PubMed ID: 23184595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute bacterial cell enumeration using flow cytometry.
    Ou F; McGoverin C; Swift S; Vanholsbeeck F
    J Appl Microbiol; 2017 Aug; 123(2):464-477. PubMed ID: 28600831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide.
    Stiefel P; Schmidt-Emrich S; Maniura-Weber K; Ren Q
    BMC Microbiol; 2015 Feb; 15():36. PubMed ID: 25881030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid and low-cost estimation of bacteria counts in solution using fluorescence spectroscopy.
    Guo R; McGoverin C; Swift S; Vanholsbeeck F
    Anal Bioanal Chem; 2017 Jun; 409(16):3959-3967. PubMed ID: 28389919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems.
    Duedu KO; French CE
    J Microbiol Methods; 2017 Apr; 135():85-92. PubMed ID: 28215962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy.
    Krause M; Rösch P; Radt B; Popp J
    Anal Chem; 2008 Nov; 80(22):8568-75. PubMed ID: 18847286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time detection of viable microorganisms by intracellular phototautomerism.
    Kort R; Nocker A; de Kat Angelino-Bart A; van Veen S; Verheij H; Schuren F; Montijn R
    BMC Biotechnol; 2010 Jun; 10():45. PubMed ID: 20565844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid method for detection of minimal bactericidal concentration of antibiotics.
    Bär W; Bäde-Schumann U; Krebs A; Cromme L
    J Microbiol Methods; 2009 Apr; 77(1):85-9. PubMed ID: 19318061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sperm viability assessment in marine invertebrates by fluorescent staining and spectrofluorimetry: A promising tool for assessing marine pollution impact.
    Gallo A; Boni R; Tosti E
    Ecotoxicol Environ Saf; 2018 Jan; 147():407-412. PubMed ID: 28888124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of live and dead Komagataeibacter xylinus cells and first attempt at precise control of inoculation in nanocellulose production.
    Zou X; Zhang S; Chen L; Hu J; Hong FF
    Microb Biotechnol; 2020 Mar; 13(2):458-469. PubMed ID: 31651088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life, death, and in-between: meanings and methods in microbiology.
    Davey HM
    Appl Environ Microbiol; 2011 Aug; 77(16):5571-6. PubMed ID: 21705550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent Copolymers for Bacterial Bioimaging and Viability Detection.
    Si Y; Grazon C; Clavier G; Rieger J; Tian Y; Audibert JF; Sclavi B; Méallet-Renault R
    ACS Sens; 2020 Sep; 5(9):2843-2851. PubMed ID: 32786389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Combined Immunofluorescence and Fluorescent Viability Cocktail Staining Procedure for Rapid Microscopic Detection and Enumeration of Live Legionella pneumophila.
    John JJ; May CJ; Bruno JG
    J Fluoresc; 2021 Sep; 31(5):1425-1432. PubMed ID: 34241791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems.
    Lebaron P; Parthuisot N; Catala P
    Appl Environ Microbiol; 1998 May; 64(5):1725-30. PubMed ID: 9572943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry.
    Khan MM; Pyle BH; Camper AK
    Appl Environ Microbiol; 2010 Aug; 76(15):5088-96. PubMed ID: 20543046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of Propidium Monoazide on Quantitative Real-Time PCR-Based Enumeration of Staphylococcus aureus Live Cells Treated with Various Sanitizers.
    Takahashi H; Kasuga R; Miya S; Miyamura N; Kuda T; Kimura B
    J Food Prot; 2018 Nov; 81(11):1815-1820. PubMed ID: 30307759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.