BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30886219)

  • 41. Purification, crystallization and preliminary X-ray analysis of the soluble domain of the Na+-pumping cytochrome bo quinol oxidase from Vitreoscilla.
    Kim KJ; Kim Y; Park KW; Webster DA; Howard AJ
    Acta Crystallogr D Biol Crystallogr; 2002 Aug; 58(Pt 8):1329-31. PubMed ID: 12136145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Timing of electron and proton transfer in the ba(3) cytochrome c oxidase from Thermus thermophilus.
    von Ballmoos C; Lachmann P; Gennis RB; Ädelroth P; Brzezinski P
    Biochemistry; 2012 Jun; 51(22):4507-17. PubMed ID: 22624600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reconstitution of the Ubiquinone-dependent pyruvate oxidase system of Escherichia coli with the cytochrome o terminal oxidase complex.
    Carter K; Gennis RB
    J Biol Chem; 1985 Sep; 260(20):10986-90. PubMed ID: 3897227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single Liposome Measurements for the Study of Proton-Pumping Membrane Enzymes Using Electrochemistry and Fluorescent Microscopy.
    Mazurenko I; Hatzakis NS; Jeuken LJC
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tryptophan-136 in subunit II of cytochrome bo3 from Escherichia coli may participate in the binding of ubiquinol.
    Ma J; Puustinen A; Wikström M; Gennis RB
    Biochemistry; 1998 Aug; 37(34):11806-11. PubMed ID: 9718303
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions.
    Kallio PT; Kim DJ; Tsai PS; Bailey JE
    Eur J Biochem; 1994 Jan; 219(1-2):201-8. PubMed ID: 8306987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Concerted involvement of cooperative proton-electron linkage and water production in the proton pump of cytochrome c oxidase.
    Papa S; Capitanio G; Luca Martino P
    Biochim Biophys Acta; 2006; 1757(9-10):1133-43. PubMed ID: 16945321
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glutamate-89 in subunit II of cytochrome bo3 from Escherichia coli is required for the function of the heme-copper oxidase.
    Ma J; Tsatsos PH; Zaslavsky D; Barquera B; Thomas JW; Katsonouri A; Puustinen A; Wikström M; Brzezinski P; Alben JO; Gennis RB
    Biochemistry; 1999 Nov; 38(46):15150-6. PubMed ID: 10563797
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation.
    Matsushita K; Patel L; Kaback HR
    Biochemistry; 1984 Sep; 23(20):4703-14. PubMed ID: 6093862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis.
    Fang H; Lin RJ; Gennis RB
    J Biol Chem; 1989 May; 264(14):8026-32. PubMed ID: 2656671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reaction of the Escherichia coli quinol oxidase cytochrome bo3 with dioxygen: the role of a bound ubiquinone molecule.
    Puustinen A; Verkhovsky MI; Morgan JE; Belevich NP; Wikstrom M
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1545-8. PubMed ID: 8643669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A study of cytochrome bo3 in a tethered bilayer lipid membrane.
    Weiss SA; Bushby RJ; Evans SD; Jeuken LJ
    Biochim Biophys Acta; 2010 Dec; 1797(12):1917-23. PubMed ID: 20096262
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sodium influence on energy transduction by complexes I from Escherichia coli and Paracoccus denitrificans.
    Batista AP; Pereira MM
    Biochim Biophys Acta; 2011 Mar; 1807(3):286-92. PubMed ID: 21172303
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glutamate 107 in subunit I of the cytochrome bd quinol oxidase from Escherichia coli is protonated and near the heme d/heme b595 binuclear center.
    Yang K; Zhang J; Vakkasoglu AS; Hielscher R; Osborne JP; Hemp J; Miyoshi H; Hellwig P; Gennis RB
    Biochemistry; 2007 Mar; 46(11):3270-8. PubMed ID: 17305364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermodynamics of electron transfer in Escherichia coli cytochrome bo3.
    Schultz BE; Chan SI
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11643-8. PubMed ID: 9751719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Ubiquinol Binding Site of Cytochrome
    Ding Z; Sun C; Yi SM; Gennis RB; Dikanov SA
    Biochemistry; 2019 Nov; 58(45):4559-4569. PubMed ID: 31644263
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.
    Bekker M; de Vries S; Ter Beek A; Hellingwerf KJ; de Mattos MJ
    J Bacteriol; 2009 Sep; 191(17):5510-7. PubMed ID: 19542282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases.
    Papa S; Capitanio N; Villani G; Capitanio G; Bizzoca A; Palese LL; Carlino V; De Nitto E
    Biochimie; 1998 Oct; 80(10):821-36. PubMed ID: 9893941
    [TBL] [Abstract][Full Text] [Related]  

  • 59. D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase.
    Matsushita K; Kaback HR
    Biochemistry; 1986 May; 25(9):2321-7. PubMed ID: 3013300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural Changes and Proton Transfer in Cytochrome c Oxidase.
    Vilhjálmsdóttir J; Johansson AL; Brzezinski P
    Sci Rep; 2015 Aug; 5():12047. PubMed ID: 26310633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.