These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30886239)

  • 1. Reconfigurable Acrylic-tape Hybrid Microfluidics.
    Ren Y; Ray S; Liu Y
    Sci Rep; 2019 Mar; 9(1):4824. PubMed ID: 30886239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication.
    Smith S; Sypabekova M; Kim S
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P; Fung D; Kunde YA; Zeytun A; Branch B; Goddard G
    Lab Chip; 2010 Sep; 10(17):2286-91. PubMed ID: 20593077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rapid Prototyping Approach for Multi-Material, Reversibly Sealed Microfluidics.
    Halwes M; Stamp M; Collins DJ
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic Guide to Multilayer Microfluidic Fabrication with Polyimide Tape and Diode Laser.
    Thaweeskulchai T; Schulte A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid mask prototyping for microfluidics.
    Maisonneuve BG; Honegger T; Cordeiro J; Lecarme O; Thiry T; Fuard D; Berton K; Picard E; Zelsmann M; Peyrade D
    Biomicrofluidics; 2016 Mar; 10(2):024103. PubMed ID: 27014396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices.
    Thaweeskulchai T; Schulte A
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization.
    Kojic SP; Stojanovic GM; Radonic V
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization.
    Ćatić N; Wells L; Al Nahas K; Smith M; Jing Q; Keyser UF; Cama J; Kar-Narayan S
    Appl Mater Today; 2020 Jun; 19():100618. PubMed ID: 33521242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter.
    Yuen PK; Goral VN
    Lab Chip; 2010 Feb; 10(3):384-7. PubMed ID: 20091012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing.
    Hahn YK; Hong D; Kang JH; Choi S
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators.
    Zhang Y; Cole T; Yun G; Li Y; Zhao Q; Lu H; Zheng J; Li W; Tang SY
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a Transparent and Adhesive Sealing Top for Microfluidic Lab-Chip Applications.
    Agarwal A; Salahuddin A; Ahamed MJ
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials and methods for droplet microfluidic device fabrication.
    Elvira KS; Gielen F; Tsai SSH; Nightingale AM
    Lab Chip; 2022 Mar; 22(5):859-875. PubMed ID: 35170611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control.
    Markov DA; Manuel S; Shor LM; Opalenik SR; Wikswo JP; Samson PC
    Biomed Microdevices; 2010 Feb; 12(1):135-44. PubMed ID: 19859812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Punch card programmable microfluidics.
    Korir G; Prakash M
    PLoS One; 2015; 10(3):e0115993. PubMed ID: 25738834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation.
    Sasaki N; Sugenami E
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.