These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30886278)

  • 1. Novel Data Transformations for RNA-seq Differential Expression Analysis.
    Zhang Z; Yu D; Seo M; Hersh CP; Weiss ST; Qiu W
    Sci Rep; 2019 Mar; 9(1):4820. PubMed ID: 30886278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust identification of differentially expressed genes from RNA-seq data.
    Shahjaman M; Manir Hossain Mollah M; Rezanur Rahman M; Islam SMS; Nurul Haque Mollah M
    Genomics; 2020 Mar; 112(2):2000-2010. PubMed ID: 31756426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exaggerated false positives by popular differential expression methods when analyzing human population samples.
    Li Y; Ge X; Peng F; Li W; Li JJ
    Genome Biol; 2022 Mar; 23(1):79. PubMed ID: 35292087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies.
    Li X; Cooper NGF; O'Toole TE; Rouchka EC
    BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of RNA-seq differential analysis methods.
    Li D; Zand MS; Dye TD; Goniewicz ML; Rahman I; Xie Z
    PLoS One; 2022; 17(9):e0264246. PubMed ID: 36112652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data.
    Baik B; Yoon S; Nam D
    PLoS One; 2020; 15(4):e0232271. PubMed ID: 32353015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robustness of differential gene expression analysis of RNA-seq.
    Stupnikov A; McInerney CE; Savage KI; McIntosh SA; Emmert-Streib F; Kennedy R; Salto-Tellez M; Prise KM; McArt DG
    Comput Struct Biotechnol J; 2021; 19():3470-3481. PubMed ID: 34188784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments.
    Bi R; Liu P
    BMC Bioinformatics; 2016 Mar; 17():146. PubMed ID: 27029470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. limma powers differential expression analyses for RNA-sequencing and microarray studies.
    Ritchie ME; Phipson B; Wu D; Hu Y; Law CW; Shi W; Smyth GK
    Nucleic Acids Res; 2015 Apr; 43(7):e47. PubMed ID: 25605792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Profiling of RNA Tumors Using High-Throughput RNA Sequencing: From Raw Data to Systems Level Analyses.
    da Silveira WA; Hazard ES; Chung D; Hardiman G
    Methods Mol Biol; 2019; 1908():185-204. PubMed ID: 30649729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
    Chen L; Wang C; Qin ZS; Wu H
    Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling bias and variation in the stochastic processes of small RNA sequencing.
    Argyropoulos C; Etheridge A; Sakhanenko N; Galas D
    Nucleic Acids Res; 2017 Jun; 45(11):e104. PubMed ID: 28369495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions.
    Suner A
    Stat Appl Genet Mol Biol; 2019 Aug; 18(5):. PubMed ID: 31646845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the Pathogenic Biomarkers for Hepatocellular Carcinoma Based on RNA-seq Analyses.
    Jiang W; Zhang L; Guo Q; Wang H; Ma M; Sun J; Chen C
    Pathol Oncol Res; 2019 Jul; 25(3):1207-1213. PubMed ID: 30680535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data.
    Park K; An J; Gim J; Seo M; Lee W; Park T; Won S
    BMC Genomics; 2019 Jul; 20(1):540. PubMed ID: 31266443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of batch effect correction methods on drug induced differential gene expression profiles.
    Zhou W; Koudijs KKM; Böhringer S
    BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of gene signatures from RNA-seq data using Pareto-optimal cluster algorithm.
    Mallik S; Zhao Z
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):126. PubMed ID: 30577846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation and model choice for RNA-seq co-expression analysis.
    Rau A; Maugis-Rabusseau C
    Brief Bioinform; 2018 May; 19(3):425-436. PubMed ID: 28065917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data.
    Jain N; Cho H; O'Connell M; Lee JK
    BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.