These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30886312)

  • 1. Direction control of quasi-stokeslet induced by thermoplasmonic heating of a water vapor microbubble.
    Namura K; Imafuku S; Kumar S; Nakajima K; Sakakura M; Suzuki M
    Sci Rep; 2019 Mar; 9(1):4770. PubMed ID: 30886312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-stokeslet induced by thermoplasmonic Marangoni effect around a water vapor microbubble.
    Namura K; Nakajima K; Suzuki M
    Sci Rep; 2017 Mar; 7():45776. PubMed ID: 28361949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters.
    Namura K; Nakajima K; Suzuki M
    Nanotechnology; 2018 Feb; 29(6):065201. PubMed ID: 29251265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycine crystallization in solution by CW laser-induced microbubble on gold thin film surface.
    Uwada T; Fujii S; Sugiyama T; Usman A; Miura A; Masuhara H; Kanaizuka K; Haga MA
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1158-63. PubMed ID: 22339812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong Transient Flows Generated by Thermoplasmonic Bubble Nucleation.
    Jones S; Andrén D; Antosiewicz TJ; Stilgoe A; Rubinsztein-Dunlop H; Käll M
    ACS Nano; 2020 Dec; 14(12):17468-17475. PubMed ID: 33290656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble.
    Zheng Y; Liu H; Wang Y; Zhu C; Wang S; Cao J; Zhu S
    Lab Chip; 2011 Nov; 11(22):3816-20. PubMed ID: 21956638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal generation of programmable microbubble array on nanoporous gold disks.
    Li J; Zhao F; Deng Y; Liu D; Chen CH; Shih WC
    Opt Express; 2018 Jun; 26(13):16893-16902. PubMed ID: 30119508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic guiding, valving, switching and mixing based on plasmonic heating in a random gold nanoisland substrate.
    Chen J; Kang Z; Wang G; Loo J; Kong SK; Ho HP
    Lab Chip; 2015 Jun; 15(11):2504-2512. PubMed ID: 25963226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady State Vapor Bubble in Pool Boiling.
    Zou A; Chanana A; Agrawal A; Wayner PC; Maroo SC
    Sci Rep; 2016 Feb; 6():20240. PubMed ID: 26837464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles.
    Roy B; Arya M; Thomas P; Jürgschat JK; Venkata Rao K; Banerjee A; Malla Reddy C; Roy S
    Langmuir; 2013 Nov; 29(47):14733-42. PubMed ID: 24171640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial thermocapillary vortical flow for microfluidic mixing.
    Muruganathan R; Zhang Y; Fischer TM
    J Am Chem Soc; 2006 Mar; 128(11):3474-5. PubMed ID: 16536493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Modulation of Thermoplasmonic Nanobubbles in Water.
    Jones S; Andrén D; Antosiewicz TJ; Käll M
    Nano Lett; 2019 Nov; 19(11):8294-8302. PubMed ID: 31647867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced thermal bubbles for microfluidic applications.
    Zhang K; Jian A; Zhang X; Wang Y; Li Z; Tam HY
    Lab Chip; 2011 Apr; 11(7):1389-95. PubMed ID: 21331412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation.
    Angelsky OV; Bekshaev AY; Maksimyak PP; Maksimyak AP; Hanson SG; Kontush SM
    Opt Express; 2017 Mar; 25(5):5232-5243. PubMed ID: 28380787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Cavitation Bubble in Tap Water by Continuous-Wave Laser Focused on a Metallic Surface.
    Kim N; Park H; Do H
    Langmuir; 2019 Mar; 35(9):3308-3318. PubMed ID: 30764612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitation inception pressure and bubble cloud formation due to the backscattering of high-intensity focused ultrasound from a laser-induced bubble.
    Horiba T; Ogasawara T; Takahira H
    J Acoust Soc Am; 2020 Feb; 147(2):1207. PubMed ID: 32113276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
    Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Momentum effects in steady nucleate pool boiling during microgravity.
    Merte H
    Ann N Y Acad Sci; 2004 Nov; 1027():196-216. PubMed ID: 15644357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs.
    Alaulamie AA; Baral S; Johnson SC; Richardson HH
    Small; 2017 Jan; 13(1):. PubMed ID: 27699975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.