These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30886411)

  • 1. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning.
    Deng Y; Bao F; Dai Q; Wu LF; Altschuler SJ
    Nat Methods; 2019 Apr; 16(4):311-314. PubMed ID: 30886411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A discriminative learning approach to differential expression analysis for single-cell RNA-seq.
    Ntranos V; Yi L; Melsted P; Pachter L
    Nat Methods; 2019 Feb; 16(2):163-166. PubMed ID: 30664774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell RNA-seq denoising using a deep count autoencoder.
    Eraslan G; Simon LM; Mircea M; Mueller NS; Theis FJ
    Nat Commun; 2019 Jan; 10(1):390. PubMed ID: 30674886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep generative modeling for single-cell transcriptomics.
    Lopez R; Regier J; Cole MB; Jordan MI; Yosef N
    Nat Methods; 2018 Dec; 15(12):1053-1058. PubMed ID: 30504886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data denoising with transfer learning in single-cell transcriptomics.
    Wang J; Agarwal D; Huang M; Hu G; Zhou Z; Ye C; Zhang NR
    Nat Methods; 2019 Sep; 16(9):875-878. PubMed ID: 31471617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.
    Guo M; Wang H; Potter SS; Whitsett JA; Xu Y
    PLoS Comput Biol; 2015 Nov; 11(11):e1004575. PubMed ID: 26600239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. dropClust: efficient clustering of ultra-large scRNA-seq data.
    Sinha D; Kumar A; Kumar H; Bandyopadhyay S; Sengupta D
    Nucleic Acids Res; 2018 Apr; 46(6):e36. PubMed ID: 29361178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating multiple references for single-cell assignment.
    Duan B; Chen S; Chen X; Zhu C; Tang C; Wang S; Gao Y; Fu S; Liu Q
    Nucleic Acids Res; 2021 Aug; 49(14):e80. PubMed ID: 34037791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using neural networks for reducing the dimensions of single-cell RNA-Seq data.
    Lin C; Jain S; Kim H; Bar-Joseph Z
    Nucleic Acids Res; 2017 Sep; 45(17):e156. PubMed ID: 28973464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scGen predicts single-cell perturbation responses.
    Lotfollahi M; Wolf FA; Theis FJ
    Nat Methods; 2019 Aug; 16(8):715-721. PubMed ID: 31363220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scTab: Scaling cross-tissue single-cell annotation models.
    Fischer F; Fischer DS; Mukhin R; Isaev A; Biederstedt E; Villani AC; Theis FJ
    Nat Commun; 2024 Aug; 15(1):6611. PubMed ID: 39098889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent component analysis recovers consistent regulatory signals from disparate datasets.
    Sastry AV; Hu A; Heckmann D; Poudel S; Kavvas E; Palsson BO
    PLoS Comput Biol; 2021 Feb; 17(2):e1008647. PubMed ID: 33529205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating measures of association for single-cell transcriptomics.
    Skinnider MA; Squair JW; Foster LJ
    Nat Methods; 2019 May; 16(5):381-386. PubMed ID: 30962620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MARS: discovering novel cell types across heterogeneous single-cell experiments.
    Brbić M; Zitnik M; Wang S; Pisco AO; Altman RB; Darmanis S; Leskovec J
    Nat Methods; 2020 Dec; 17(12):1200-1206. PubMed ID: 33077966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of SuperCT for Enhanced Characterization of Single-Cell Transcriptomic Profiles.
    Zhong J; Lin W
    Methods Mol Biol; 2020; 2117():169-177. PubMed ID: 31960378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Class-Information-Based Sparse Component Analysis Method to Identify Differentially Expressed Genes on RNA-Seq Data.
    Liu JX; Xu Y; Gao YL; Zheng CH; Wang D; Zhu Q
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):392-8. PubMed ID: 27045835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data.
    Lin P; Troup M; Ho JW
    Genome Biol; 2017 Mar; 18(1):59. PubMed ID: 28351406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.