BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30886791)

  • 1. A Protein-Based, Water-Insoluble, and Bendable Polymer with Ionic Conductivity: A Roadmap for Flexible and Green Electronics.
    Kadumudi FB; Jahanshahi M; Mehrali M; Zsurzsan TG; Taebnia N; Hasany M; Mohanty S; Knott A; Godau B; Akbari M; Dolatshahi-Pirouz A
    Adv Sci (Weinh); 2019 Mar; 6(5):1801241. PubMed ID: 30886791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic Flexible Electronics with Self-Bendable Films.
    Ju H; Jeong J; Kwak P; Kwon M; Lee J
    Soft Robot; 2018 Dec; 5(6):710-717. PubMed ID: 30036144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible and Green Electronics Manufactured by Origami Folding of Nanosilicate-Reinforced Cellulose Paper.
    Kadumudi FB; Trifol J; Jahanshahi M; Zsurzsan TG; Mehrali M; Zeqiraj E; Shaki H; Alehosseini M; Gundlach C; Li Q; Dong M; Akbari M; Knott A; Almdal K; Dolatshahi-Pirouz A
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48027-48039. PubMed ID: 33035422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable Transparent Conductive Films from Long Carbon Nanotube Metals.
    Wang P; Peng Z; Li M; Wang Y
    Small; 2018 Sep; 14(38):e1802625. PubMed ID: 30091525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly oriented gold/nanoclay-polymer nanocomposites for flexible gas barrier films.
    Song EH; Kang BH; Kim TY; Lee HJ; Park YW; Kim YC; Ju BK
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4778-83. PubMed ID: 25668131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal Nature-Inspired and Amine-Promoted Metallization for Flexible Electronics and Supercapacitors.
    Zhang H; Zhang P; Zhang H; Li X; Lei L; Chen L; Zheng Z; Yu Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28963-28970. PubMed ID: 30080380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green Flexible Electronics: Natural Materials, Fabrication, and Applications.
    Hui Z; Zhang L; Ren G; Sun G; Yu HD; Huang W
    Adv Mater; 2023 Jul; 35(28):e2211202. PubMed ID: 36763956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices.
    Han Y; Cui Y; Liu X; Wang Y
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maskless Patterning of Biodegradable Conductors by Selective Laser Sintering of Microparticle Inks and Its Application in Flexible Transient Electronics.
    Feng S; Cao S; Tian Z; Zhu H; Kong D
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45844-45852. PubMed ID: 31718133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors.
    Sheng F; Yi J; Shen S; Cheng R; Ning C; Ma L; Peng X; Deng W; Dong K; Wang ZL
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44868-44877. PubMed ID: 34506103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale Fabrication of High-Performance Ionic Polymer-Metal Composite Flexible Sensors by in Situ Plasma Etching and Magnetron Sputtering.
    Fu R; Yang Y; Lu C; Ming Y; Zhao X; Hu Y; Zhao L; Hao J; Chen W
    ACS Omega; 2018 Aug; 3(8):9146-9154. PubMed ID: 31459048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk-Based Advanced Materials for Soft Electronics.
    Wang C; Xia K; Zhang Y; Kaplan DL
    Acc Chem Res; 2019 Oct; 52(10):2916-2927. PubMed ID: 31536330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems.
    Kang K; Cho Y; Yu KJ
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic Gel Paper with Long-Term Bendable Electrical Robustness for Use in Flexible Electroluminescent Devices.
    He M; Zhang K; Chen G; Tian J; Su B
    ACS Appl Mater Interfaces; 2017 May; 9(19):16466-16473. PubMed ID: 28441006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.
    Sarwar MS; Dobashi Y; Preston C; Wyss JK; Mirabbasi S; Madden JD
    Sci Adv; 2017 Mar; 3(3):e1602200. PubMed ID: 28345045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for Flexible Electronics.
    Yan S; Zhang G; Jiang H; Li F; Zhang L; Xia Y; Wang Z; Wu Y; Li H
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10736-10744. PubMed ID: 30801171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recyclable conductive nanoclay for direct in situ printing flexible electronics.
    Wu P; Wang Z; Yao X; Fu J; He Y
    Mater Horiz; 2021 Jul; 8(7):2006-2017. PubMed ID: 34846477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.