BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30886810)

  • 1. Perfection of Perovskite Grain Boundary Passivation by Eu-Porphyrin Complex for Overall-Stable Perovskite Solar Cells.
    Feng X; Chen R; Nan ZA; Lv X; Meng R; Cao J; Tang Y
    Adv Sci (Weinh); 2019 Mar; 6(5):1802040. PubMed ID: 30886810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Grain Boundary Suture by Low-Cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photoresponse.
    Cao J; Li C; Lv X; Feng X; Meng R; Wu Y; Tang Y
    J Am Chem Soc; 2018 Sep; 140(37):11577-11580. PubMed ID: 30125479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots.
    Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Photovoltage of Blade-Coated MAPbI
    Abbas M; Cai B; Hu J; Guo F; Mai Y; Yuan XC
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46566-46576. PubMed ID: 34570471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Moisture-Based Grain Boundary Passivation on Cell Performance and Ionic Migration in Organic-Inorganic Halide Perovskite Solar Cells.
    Hoque MNF; He R; Warzywoda J; Fan Z
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30322-30329. PubMed ID: 30118195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells.
    Liu W; Liu N; Ji S; Hua H; Ma Y; Hu R; Zhang J; Chu L; Li X; Huang W
    Nanomicro Lett; 2020 Jun; 12(1):119. PubMed ID: 34138140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient and Stable 2D Dion Jacobson/3D Perovskite Heterojunction Solar Cells.
    Yukta ; Parikh N; Chavan RD; Yadav P; Nazeeruddin MK; Satapathi S
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29744-29753. PubMed ID: 35728567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passivation of the grain boundaries of CH
    Guo Q; Yuan F; Zhang B; Zhou S; Zhang J; Bai Y; Fan L; Hayat T; Alsaedi A; Tan Z
    Nanoscale; 2018 Dec; 11(1):115-124. PubMed ID: 30525161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency.
    Li C; Yin J; Chen R; Lv X; Feng X; Wu Y; Cao J
    J Am Chem Soc; 2019 Apr; 141(15):6345-6351. PubMed ID: 30875223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Surface Defect Passivation of Ionic Liquids for Efficient and Stable MAPbI
    Duan S; Sun Q; Liu G; Deng J; Meng X; Shen B; Hu D; Kang B; Silva SRP
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46483-46492. PubMed ID: 37748040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grain Boundary Defect Passivation of Triple Cation Mixed Halide Perovskite with Hydrazine-Based Aromatic Iodide for Efficiency Improvement.
    Rahman SI; Lamsal BS; Gurung A; Chowdhury AH; Reza KM; Ghimire N; Bahrami B; Luo W; Bobba RS; Pokharel J; Baniya A; Laskar AR; Emshadi K; Rahman MT; Qiao Q
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41312-41322. PubMed ID: 32829634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and Stable Perovskite Solar Cells via CsPF
    Cai Q; Lin Z; Zhang W; Xu X; Dong H; Yuan S; Liang C; Mu C
    J Phys Chem Lett; 2022 May; 13(20):4598-4604. PubMed ID: 35584450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient Perovskite Solar Cells.
    Wang Z; Pradhan A; Kamarudin MA; Pandey M; Pandey SS; Zhang P; Ng CH; Tripathi ASM; Ma T; Hayase S
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10012-10020. PubMed ID: 30775904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HPbI
    He Y; Wang W; Qi L
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38985-38993. PubMed ID: 30339348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifunctional Interface Passivation via Copper Acetylacetonate for Efficient and Stable Perovskite Solar Cells.
    Wang Z; Xiang W; Shi C; Xiao S; Wu R; Yu X; Ma L; Qin Z; Lei H; Chen X; Fang G; Qin P
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49739-49748. PubMed ID: 37842970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain Enlargement and Defect Passivation with Melamine Additives for High Efficiency and Stable CsPbBr
    Zhu J; He B; Gong Z; Ding Y; Zhang W; Li X; Zong Z; Chen H; Tang Q
    ChemSusChem; 2020 Apr; 13(7):1834-1843. PubMed ID: 31971332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotinamide as Additive for Microcrystalline and Defect Passivated Perovskite Solar Cells with 21.7% Efficiency.
    Ma Z; Zhou W; Huang D; Liu Q; Xiao Z; Jiang H; Yang Z; Zhang W; Huang Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52500-52508. PubMed ID: 33170633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Surface Passivation of Perovskite Film by 4-Fluorophenethylammonium Iodide toward Stable and Efficient Perovskite Solar Cells.
    Jiang X; Chen S; Li Y; Zhang L; Shen N; Zhang G; Du J; Fu N; Xu B
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2558-2565. PubMed ID: 33416305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells.
    Liu C; Huang L; Zhou X; Wang X; Yao J; Liu Z; Liu SF; Ma W; Xu B
    Sci Bull (Beijing); 2021 Jul; 66(14):1419-1428. PubMed ID: 36654368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates.
    Dou Y; Wang D; Li G; Liao Y; Sun W; Wu J; Lan Z
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32159-32168. PubMed ID: 31403271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.