These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 30886891)
1. Hip load capacity cut-points for Astronaut Skeletal Health NASA Finite Element Strength Task Group Recommendations. Michalski AS; Amin S; Cheung AM; Cody DD; Keyak JH; Lang TF; Nicolella DP; Orwoll ES; Boyd SK; Sibonga JD NPJ Microgravity; 2019; 5():6. PubMed ID: 30886891 [TBL] [Abstract][Full Text] [Related]
2. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Keyak JH; Sigurdsson S; Karlsdottir GS; Oskarsdottir D; Sigmarsdottir A; Kornak J; Harris TB; Sigurdsson G; Jonsson BY; Siggeirsdottir K; Eiriksdottir G; Gudnason V; Lang TF Bone; 2013 Nov; 57(1):18-29. PubMed ID: 23907032 [TBL] [Abstract][Full Text] [Related]
3. Hip load capacity and yield load in men and women of all ages. Keyak JH; Kaneko TS; Khosla S; Amin S; Atkinson EJ; Lang TF; Sibonga JD Bone; 2020 Aug; 137():115321. PubMed ID: 32184195 [TBL] [Abstract][Full Text] [Related]
4. Spaceflight-induced bone loss: is there an osteoporosis risk? Sibonga JD Curr Osteoporos Rep; 2013 Jun; 11(2):92-8. PubMed ID: 23564190 [TBL] [Abstract][Full Text] [Related]
5. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit. Orwoll ES; Adler RA; Amin S; Binkley N; Lewiecki EM; Petak SM; Shapses SA; Sinaki M; Watts NB; Sibonga JD J Bone Miner Res; 2013 Jun; 28(6):1243-55. PubMed ID: 23553962 [TBL] [Abstract][Full Text] [Related]
6. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations. Panyasantisuk J; Dall'Ara E; Pretterklieber M; Pahr DH; Zysset PK Med Eng Phys; 2018 Sep; 59():36-42. PubMed ID: 30131112 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT). Pottecher P; Engelke K; Duchemin L; Museyko O; Moser T; Mitton D; Vicaut E; Adams J; Skalli W; Laredo JD; Bousson V Radiology; 2016 Sep; 280(3):837-47. PubMed ID: 27077380 [TBL] [Abstract][Full Text] [Related]
8. Differences in hip quantitative computed tomography (QCT) measurements of bone mineral density and bone strength between glucocorticoid-treated and glucocorticoid-naive postmenopausal women. Lian KC; Lang TF; Keyak JH; Modin GW; Rehman Q; Do L; Lane NE Osteoporos Int; 2005 Jun; 16(6):642-50. PubMed ID: 15455195 [TBL] [Abstract][Full Text] [Related]
9. Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age? Rezaei A; Giambini H; Rossman T; Carlson KD; Yaszemski MJ; Lu L; Dragomir-Daescu D Ann Biomed Eng; 2017 Dec; 45(12):2847-2856. PubMed ID: 28940110 [TBL] [Abstract][Full Text] [Related]
10. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study. Choisne J; Valiadis JM; Travert C; Kolta S; Roux C; Skalli W J Mech Behav Biomed Mater; 2018 Nov; 87():190-196. PubMed ID: 30077078 [TBL] [Abstract][Full Text] [Related]
11. Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk. Luo Y; Ahmed S; Leslie WD Comput Methods Programs Biomed; 2018 Mar; 155():75-83. PubMed ID: 29512506 [TBL] [Abstract][Full Text] [Related]
12. An extravehicular suit impact load attenuation study to improve astronaut bone fracture prediction. Sulkowski CM; Gilkey KM; Lewandowski BE; Samorezov S; Myers JG Aviat Space Environ Med; 2011 Apr; 82(4):455-62. PubMed ID: 21485404 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Radius Microstructure and Areal Bone Mineral Density Improves Fracture Prediction in Postmenopausal Women. Biver E; Durosier-Izart C; Chevalley T; van Rietbergen B; Rizzoli R; Ferrari S J Bone Miner Res; 2018 Feb; 33(2):328-337. PubMed ID: 28960489 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a simplified hip structure analysis method for the prediction of incident hip fracture events. Khoo BC; Lewis JR; Brown K; Prince RL Osteoporos Int; 2016 Jan; 27(1):241-8. PubMed ID: 26282230 [TBL] [Abstract][Full Text] [Related]
15. Predicting bone strength from CT data: Clinical applications. Viceconti M Morphologie; 2019 Dec; 103(343):180-186. PubMed ID: 31630964 [TBL] [Abstract][Full Text] [Related]
16. Are CT-Based Finite Element Model Predictions of Femoral Bone Strength Clinically Useful? Viceconti M; Qasim M; Bhattacharya P; Li X Curr Osteoporos Rep; 2018 Jun; 16(3):216-223. PubMed ID: 29656377 [TBL] [Abstract][Full Text] [Related]
17. A preliminary dual-energy X-ray absorptiometry-based finite element model for assessing osteoporotic hip fracture risk. Luo Y; Ferdous Z; Leslie WD Proc Inst Mech Eng H; 2011 Dec; 225(12):1188-95. PubMed ID: 22320058 [TBL] [Abstract][Full Text] [Related]
18. Femoral strength is better predicted by finite element models than QCT and DXA. Cody DD; Gross GJ; Hou FJ; Spencer HJ; Goldstein SA; Fyhrie DP J Biomech; 1999 Oct; 32(10):1013-20. PubMed ID: 10476839 [TBL] [Abstract][Full Text] [Related]
19. Distal skeletal tibia assessed by HR-pQCT is highly correlated with femoral and lumbar vertebra failure loads. Kroker A; Plett R; Nishiyama KK; McErlain DD; Sandino C; Boyd SK J Biomech; 2017 Jul; 59():43-49. PubMed ID: 28558915 [TBL] [Abstract][Full Text] [Related]
20. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: a preliminary study in elderly women. Falcinelli C; Schileo E; Balistreri L; Baruffaldi F; Bordini B; Viceconti M; Albisinni U; Ceccarelli F; Milandri L; Toni A; Taddei F Bone; 2014 Oct; 67():71-80. PubMed ID: 25014885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]