These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230 [TBL] [Abstract][Full Text] [Related]
4. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216 [TBL] [Abstract][Full Text] [Related]
5. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
6. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions. Ozkan O; Turkoglu Sasmazel H J Biosci Bioeng; 2016 Aug; 122(2):232-9. PubMed ID: 26906227 [TBL] [Abstract][Full Text] [Related]
7. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Lowery JL; Datta N; Rutledge GC Biomaterials; 2010 Jan; 31(3):491-504. PubMed ID: 19822363 [TBL] [Abstract][Full Text] [Related]
8. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Ranjbar-Mohammadi M; Bahrami SH Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898 [TBL] [Abstract][Full Text] [Related]
9. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering. Ghosal K; Manakhov A; Zajíčková L; Thomas S AAPS PharmSciTech; 2017 Jan; 18(1):72-81. PubMed ID: 26883261 [TBL] [Abstract][Full Text] [Related]
10. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Ranjbar-Mohammadi M; Bahrami SH Int J Biol Macromol; 2016 Mar; 84():448-56. PubMed ID: 26706845 [TBL] [Abstract][Full Text] [Related]
11. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007 [TBL] [Abstract][Full Text] [Related]
12. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. Nguyen TH; Bao TQ; Park I; Lee BT J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833 [TBL] [Abstract][Full Text] [Related]
13. Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Nadim A; Khorasani SN; Kharaziha M; Davoodi SM Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():47-58. PubMed ID: 28576011 [TBL] [Abstract][Full Text] [Related]
14. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
15. Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. Sadeghi A; Moztarzadeh F; Aghazadeh Mohandesi J Int J Biol Macromol; 2019 Jan; 121():625-632. PubMed ID: 30300697 [TBL] [Abstract][Full Text] [Related]
16. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications. Coverdale BDM; Gough JE; Sampson WW; Hoyland JA J Biomed Mater Res A; 2017 Oct; 105(10):2865-2874. PubMed ID: 28608414 [TBL] [Abstract][Full Text] [Related]
17. A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment. Vaikkath D; Anitha R; Sumathy B; Nair PD Colloids Surf B Biointerfaces; 2016 May; 141():112-119. PubMed ID: 26848946 [TBL] [Abstract][Full Text] [Related]
18. Electrospinning Nanofiber-Reinforced Aerogels for the Treatment of Bone Defects. Zhang Y; Yin C; Cheng Y; Huang X; Liu K; Cheng G; Li Z Adv Wound Care (New Rochelle); 2020 Aug; 9(8):441-452. PubMed ID: 32857019 [No Abstract] [Full Text] [Related]
19. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008 [TBL] [Abstract][Full Text] [Related]
20. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells. Wu X; Miao L; Yao Y; Wu W; Liu Y; Chen X; Sun W Int J Nanomedicine; 2014; 9():4135-43. PubMed ID: 25206304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]