BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30887618)

  • 1. Broad-specificity GH131 β-glucanases are a hallmark of fungi and oomycetes that colonize plants.
    Anasontzis GE; Lebrun MH; Haon M; Champion C; Kohler A; Lenfant N; Martin F; O'Connell RJ; Riley R; Grigoriev IV; Henrissat B; Berrin JG; Rosso MN
    Environ Microbiol; 2019 Aug; 21(8):2724-2739. PubMed ID: 30887618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanases and polygalacturonases of Fusarium virguliforme.
    Chang HX; Yendrek CR; Caetano-Anolles G; Hartman GL
    BMC Microbiol; 2016 Jul; 16(1):147. PubMed ID: 27405320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses.
    Larroque M; Barriot R; Bottin A; Barre A; Rougé P; Dumas B; Gaulin E
    BMC Genomics; 2012 Nov; 13():605. PubMed ID: 23140525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Glycoside Hydrolases in Phytopathogenic Fungi and Oomycetes Virulence.
    Rafiei V; Vélëz H; Tzelepis G
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens.
    Pandaranayaka EP; Frenkel O; Elad Y; Prusky D; Harel A
    BMC Genomics; 2019 Dec; 20(1):1020. PubMed ID: 31878885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes.
    Choi J; Kim KT; Jeon J; Lee YH
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S7. PubMed ID: 24564786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycoside hydrolases family 20 (GH20) represent putative virulence factors that are shared by animal pathogenic oomycetes, but are absent in phytopathogens.
    Olivera IE; Fins KC; Rodriguez SA; Abiff SK; Tartar JL; Tartar A
    BMC Microbiol; 2016 Oct; 16(1):232. PubMed ID: 27716041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saprophytic and pathogenic fungi in the Ceratocystidaceae differ in their ability to metabolize plant-derived sucrose.
    Van der Nest MA; Steenkamp ET; McTaggart AR; Trollip C; Godlonton T; Sauerman E; Roodt D; Naidoo K; Coetzee MP; Wilken PM; Wingfield MJ; Wingfield BD
    BMC Evol Biol; 2015 Dec; 15():273. PubMed ID: 26643441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts.
    Druzhinina IS; Chenthamara K; Zhang J; Atanasova L; Yang D; Miao Y; Rahimi MJ; Grujic M; Cai F; Pourmehdi S; Salim KA; Pretzer C; Kopchinskiy AG; Henrissat B; Kuo A; Hundley H; Wang M; Aerts A; Salamov A; Lipzen A; LaButti K; Barry K; Grigoriev IV; Shen Q; Kubicek CP
    PLoS Genet; 2018 Apr; 14(4):e1007322. PubMed ID: 29630596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses.
    Parrent JL; James TY; Vasaitis R; Taylor AF
    BMC Evol Biol; 2009 Jun; 9():148. PubMed ID: 19566942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extensive horizontal gene transfers between plant pathogenic fungi.
    Qiu H; Cai G; Luo J; Bhattacharya D; Zhang N
    BMC Biol; 2016 May; 14():41. PubMed ID: 27215567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal gene transfer in eukaryotic plant pathogens.
    Soanes D; Richards TA
    Annu Rev Phytopathol; 2014; 52():583-614. PubMed ID: 25090479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2013 Apr; 14():274. PubMed ID: 23617724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.
    Richards TA; Dacks JB; Jenkinson JM; Thornton CR; Talbot NJ
    Curr Biol; 2006 Sep; 16(18):1857-64. PubMed ID: 16979565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obligate biotroph parasitism: can we link genomes to lifestyles?
    Kemen E; Jones JD
    Trends Plant Sci; 2012 Aug; 17(8):448-57. PubMed ID: 22613788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes.
    Jedelská T; Luhová L; Petřivalský M
    J Exp Bot; 2021 Feb; 72(3):848-863. PubMed ID: 33367760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring laccase genes from plant pathogen genomes: a bioinformatic approach.
    Feng BZ; Li PQ; Fu L; Yu XM
    Genet Mol Res; 2015 Oct; 14(4):14019-36. PubMed ID: 26535716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi.
    Inglis GD; Kawchuk LM
    Can J Microbiol; 2002 Jan; 48(1):60-70. PubMed ID: 11888164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes.
    Richards TA; Soanes DM; Jones MD; Vasieva O; Leonard G; Paszkiewicz K; Foster PG; Hall N; Talbot NJ
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15258-63. PubMed ID: 21878562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.