These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30887700)

  • 1. Morphology-Dependent Stability of Complex Metal Hydrides and Their Intermediates Using First-Principles Calculations.
    Kang S; Heo TW; Allendorf MD; Wood BC
    Chemphyschem; 2019 May; 20(10):1340-1347. PubMed ID: 30887700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.
    Wu H
    Chemphyschem; 2008 Oct; 9(15):2157-62. PubMed ID: 18821548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Defects on the Stability and Hydrogen-Sorption Behavior of Mg-Based Hydrides.
    Grbović Novaković J; Novaković N; Kurko S; Milošević Govedarović S; Pantić T; Paskaš Mamula B; Batalović K; Radaković J; Rmuš J; Shelyapina M; Skryabina N; de Rango P; Fruchart D
    Chemphyschem; 2019 May; 20(10):1216-1247. PubMed ID: 30913344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured Metal Hydrides for Hydrogen Storage.
    Schneemann A; White JL; Kang S; Jeong S; Wan LF; Cho ES; Heo TW; Prendergast D; Urban JJ; Wood BC; Allendorf MD; Stavila V
    Chem Rev; 2018 Nov; 118(22):10775-10839. PubMed ID: 30277071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites.
    Miedema PS; Ngene P; van der Eerden AM; Sokaras D; Weng TC; Nordlund D; Au YS; de Groot FM
    Phys Chem Chem Phys; 2014 Nov; 16(41):22651-8. PubMed ID: 25231357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenation properties of lithium and sodium hydride - closo-borate, [B
    Jensen SRH; Paskevicius M; Hansen BRS; Jakobsen AS; Møller KT; White JL; Allendorf MD; Stavila V; Skibsted J; Jensen TR
    Phys Chem Chem Phys; 2018 Jun; 20(23):16266-16275. PubMed ID: 29863201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Situ/Operando X-ray Characterization of Metal Hydrides.
    Liu YS; Jeong S; White JL; Feng X; Seon Cho E; Stavila V; Allendorf MD; Urban JJ; Guo J
    Chemphyschem; 2019 May; 20(10):1261-1271. PubMed ID: 30737862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.
    Alapati SV; Karl Johnson J; Sholl DS
    Phys Chem Chem Phys; 2007 Mar; 9(12):1438-52. PubMed ID: 17356751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix infrared spectra and density functional calculations of transition metal hydrides and dihydrogen complexes.
    Andrews L
    Chem Soc Rev; 2004 Feb; 33(2):123-32. PubMed ID: 14767507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.
    Liu Y; Yang Y; Gao M; Pan H
    Chem Rec; 2016 Feb; 16(1):189-204. PubMed ID: 26638824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting impurity gases and phases during hydrogen evolution from complex metal hydrides using free energy minimization enabled by first-principles calculations.
    Kim KC; Allendorf MD; Stavila V; Sholl DS
    Phys Chem Chem Phys; 2010 Sep; 12(33):9918-26. PubMed ID: 20532325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles screening of complex transition metal hydrides for high temperature applications.
    Nicholson KM; Sholl DS
    Inorg Chem; 2014 Nov; 53(22):11833-48. PubMed ID: 25361475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States.
    Kraka E; Cremer D
    Acc Chem Res; 2010 May; 43(5):591-601. PubMed ID: 20232791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Analytical Bond Order Potential for Mg-H Systems.
    Zhou X; Kang S; Heo TW; Wood BC; Stavila V; Allendorf MD
    Chemphyschem; 2019 May; 20(10):1404-1411. PubMed ID: 30644619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of iron carbonyl-catalyzed hydrogenation of ethylene. 1. Theoretical exploration of molecular pathways.
    Asatryan R; Ruckenstein E
    J Phys Chem A; 2013 Oct; 117(42):10912-32. PubMed ID: 24063638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.
    Alapati SV; Johnson JK; Sholl DS
    J Phys Chem B; 2006 May; 110(17):8769-76. PubMed ID: 16640434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.
    de Jongh PE; Adelhelm P
    ChemSusChem; 2010 Dec; 3(12):1332-48. PubMed ID: 21080405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Electronic Flexibility in Hydrides of Zintl Phases with Tetrel-Hydrogen and Tetrel-Tetrel Bonds.
    Auer H; Schlegel R; Oeckler O; Kohlmann H
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12344-12347. PubMed ID: 28727236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogenous Pd-catalyzed asymmetric hydrogenation of unprotected indoles: scope and mechanistic studies.
    Duan Y; Li L; Chen MW; Yu CB; Fan HJ; Zhou YG
    J Am Chem Soc; 2014 May; 136(21):7688-700. PubMed ID: 24833267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining the robustness of first-principles calculations for metal hydride reaction thermodynamics by detection of metastable reaction pathways.
    Kim KC; Kulkarni AD; Johnson JK; Sholl DS
    Phys Chem Chem Phys; 2011 Dec; 13(48):21520-9. PubMed ID: 22068383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.