These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 30887791)
1. [Research progress on compliant characteristics of lower extremity exoskeleton robots]. Si G; Huang W; Li G; Xu F; Chu M; Liu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Feb; 36(1):157-163. PubMed ID: 30887791 [TBL] [Abstract][Full Text] [Related]
2. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints. He Y; Liu J; Li F; Cao W; Wu X Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860 [TBL] [Abstract][Full Text] [Related]
3. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation. Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145 [TBL] [Abstract][Full Text] [Related]
4. [Research status of lower limb exoskeleton rehabilitation robot]. Li M; Li H; Yu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):833-839. PubMed ID: 39218611 [TBL] [Abstract][Full Text] [Related]
5. Preliminary Assessment of a Compliant Gait Exoskeleton. Cestari M; Sanz-Merodio D; Garcia E Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092 [TBL] [Abstract][Full Text] [Related]
6. Design and assessment of a reconfigurable behavioral assistive robot: a pilot study. Shi E; Zhi W; Chen W; Han Y; Zhang B; Zhao X Front Neurorobot; 2024; 18():1332721. PubMed ID: 38419818 [TBL] [Abstract][Full Text] [Related]
7. Design and analysis of a lower limb assistive exoskeleton robot. Li X; Wang KY; Yang ZY Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039 [TBL] [Abstract][Full Text] [Related]
8. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction. Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059 [TBL] [Abstract][Full Text] [Related]
9. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
10. An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation. Zhang X; Chen X; Huo B; Liu C; Zhu X; Zu Y; Wang X; Chen X; Sun Q Sci Rep; 2023 Mar; 13(1):4251. PubMed ID: 36918651 [TBL] [Abstract][Full Text] [Related]
11. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study. Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952 [TBL] [Abstract][Full Text] [Related]
12. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot. Zhang J; Liu Q; Zhou J; Song A Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001 [No Abstract] [Full Text] [Related]
13. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Su D; Hu Z; Wu J; Shang P; Luo Z Front Neurorobot; 2023; 17():1186175. PubMed ID: 37465413 [TBL] [Abstract][Full Text] [Related]
14. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting. Xia Y; Wei W; Lin X; Li J Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041 [TBL] [Abstract][Full Text] [Related]
15. Flexible lower limb exoskeleton systems: A review. Meng Q; Zeng Q; Xie Q; Fei C; Kong B; Lu X; Wang H; Yu H NeuroRehabilitation; 2022; 50(4):367-390. PubMed ID: 35147568 [TBL] [Abstract][Full Text] [Related]
16. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton. Wang L; Du Z; Dong W; Shen Y; Zhao G Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29562684 [TBL] [Abstract][Full Text] [Related]
17. A Systematic Review on Rigid Exoskeleton Robot Design for Wearing Comfort: Joint Self-Alignment, Attachment Interface, and Structure Customization. Chen L; Zhou D; Leng Y IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3815-3827. PubMed ID: 39401109 [TBL] [Abstract][Full Text] [Related]
18. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton. Wang S; Zhang B; Yu Z; Yan Y Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640867 [TBL] [Abstract][Full Text] [Related]
19. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Nuckols RW; Sawicki GS J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840 [TBL] [Abstract][Full Text] [Related]
20. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]