These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30887807)
1. Collapse of LiNi Li W; Asl HY; Xie Q; Manthiram A J Am Chem Soc; 2019 Apr; 141(13):5097-5101. PubMed ID: 30887807 [TBL] [Abstract][Full Text] [Related]
2. Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. Liu X; Xu GL; Yin L; Hwang I; Li Y; Lu L; Xu W; Zhang X; Chen Y; Ren Y; Sun CJ; Chen Z; Ouyang M; Amine K J Am Chem Soc; 2020 Nov; 142(46):19745-19753. PubMed ID: 33147025 [TBL] [Abstract][Full Text] [Related]
3. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. Fu C; Li G; Luo D; Li Q; Fan J; Li L ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668 [TBL] [Abstract][Full Text] [Related]
4. High-Nickel NMA: A Cobalt-Free Alternative to NMC and NCA Cathodes for Lithium-Ion Batteries. Li W; Lee S; Manthiram A Adv Mater; 2020 Aug; 32(33):e2002718. PubMed ID: 32627875 [TBL] [Abstract][Full Text] [Related]
5. Unveiling the Stabilities of Nickel-Based Layered Oxide Cathodes at an Identical Degree of Delithiation in Lithium-Based Batteries. Xie Q; Cui Z; Manthiram A Adv Mater; 2021 Aug; 33(32):e2100804. PubMed ID: 34219283 [TBL] [Abstract][Full Text] [Related]
6. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902 [TBL] [Abstract][Full Text] [Related]
7. Dual Modification Strategy for Enhanced Cycling and Rate Performance of Ni-Rich Cathode Materials in Lithium-Ion Batteries. Zhang X; Wu T; Jian J; Lin S; Sun D; Fu G; Xu Y; Liu Z; Li S; Huo H; Ma Y; Yin G; Zuo P; Cheng X; Du C Small; 2024 Nov; 20(45):e2404488. PubMed ID: 39072900 [TBL] [Abstract][Full Text] [Related]
8. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
9. Understanding the Effects of Tetrahedral Site Occupancy by the Zn Dopant in Li-NMCs toward High-Voltage Compositional-Structural-Mechanical Stability via Operando and 3D Atom Probe Tomography Studies. Sharma A; Pandey AH; Jangid MK; Srihari V; Poswal HK; Mukhopadhyay A ACS Appl Mater Interfaces; 2023 Jan; 15(1):782-794. PubMed ID: 36594652 [TBL] [Abstract][Full Text] [Related]
10. Dissolution Mechanisms of LiNi Billy E; Joulié M; Laucournet R; Boulineau A; De Vito E; Meyer D ACS Appl Mater Interfaces; 2018 May; 10(19):16424-16435. PubMed ID: 29664284 [TBL] [Abstract][Full Text] [Related]
11. Realization of a High-Voltage and High-Rate Nickel-Rich NCM Cathode Material for LIBs by Co and Ti Dual Modification. Zhang X; Qiu Y; Cheng F; Wei P; Li Y; Liu Y; Sun S; Xu Y; Li Q; Fang C; Han J; Huang Y ACS Appl Mater Interfaces; 2021 Apr; 13(15):17707-17716. PubMed ID: 33847109 [TBL] [Abstract][Full Text] [Related]
12. The Role of Intragranular Nanopores in Capacity Fade of Nickel-Rich Layered Li(Ni Ahmed S; Pokle A; Schweidler S; Beyer A; Bianchini M; Walther F; Mazilkin A; Hartmann P; Brezesinski T; Janek J; Volz K ACS Nano; 2019 Sep; 13(9):10694-10704. PubMed ID: 31480835 [TBL] [Abstract][Full Text] [Related]
14. Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries. Cui Z; Xie Q; Manthiram A ACS Appl Mater Interfaces; 2021 Apr; 13(13):15324-15332. PubMed ID: 33760578 [TBL] [Abstract][Full Text] [Related]
15. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. Shi JL; Qi R; Zhang XD; Wang PF; Fu WG; Yin YX; Xu J; Wan LJ; Guo YG ACS Appl Mater Interfaces; 2017 Dec; 9(49):42829-42835. PubMed ID: 29148695 [TBL] [Abstract][Full Text] [Related]
16. Effects of Co/Mn Content Variation on Structural and Electrochemical Properties of Single-Crystal Ni-Rich Layered Oxide Materials for Lithium Ion Batteries. You L; Wen Y; Chu B; Li G; Huang B; Wu J; Huang T; Yu A ACS Appl Mater Interfaces; 2022 Jun; 14(21):24620-24635. PubMed ID: 35588249 [TBL] [Abstract][Full Text] [Related]
17. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. Li J; Yao R; Cao C ACS Appl Mater Interfaces; 2014 Apr; 6(7):5075-82. PubMed ID: 24625317 [TBL] [Abstract][Full Text] [Related]
18. The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides. Sun G; Yin X; Yang W; Song A; Jia C; Yang W; Du Q; Ma Z; Shao G Phys Chem Chem Phys; 2017 Nov; 19(44):29886-29894. PubMed ID: 29086786 [TBL] [Abstract][Full Text] [Related]
19. Stabilizing LiNi Li J; Wu J; Li S; Liu G; Cui Y; Dong Z; Liu H; Sun X ChemSusChem; 2021 Jul; 14(13):2721-2730. PubMed ID: 33904661 [TBL] [Abstract][Full Text] [Related]
20. Surface Modification on Nickel Rich Cathode Materials for Lithium-Ion Cells: A Mini Review. Akhilash M; Salini PS; John B; Sujatha S; Mercy TD Chem Rec; 2023 Nov; 23(11):e202300132. PubMed ID: 37395417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]