These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30887807)
21. Resolving complex intralayer transition motifs in high-Ni-content layered cathode materials for lithium-ion batteries. Wang C; Wang X; Zhang R; Lei T; Kisslinger K; Xin HL Nat Mater; 2023 Feb; 22(2):235-241. PubMed ID: 36702885 [TBL] [Abstract][Full Text] [Related]
22. The Tuning of Strain in Layered Structure Oxide Cathodes for Lithium-Ion Batteries. Qiao X; Wang L; Lu J Research (Wash D C); 2024; 7():0489. PubMed ID: 39296985 [TBL] [Abstract][Full Text] [Related]
23. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Dixit M; Kosa M; Lavi OS; Markovsky B; Aurbach D; Major DT Phys Chem Chem Phys; 2016 Mar; 18(9):6799-812. PubMed ID: 26878345 [TBL] [Abstract][Full Text] [Related]
24. Ab Initio Study on Surface Segregation and Anisotropy of Ni-Rich LiNi Liang C; Longo RC; Kong F; Zhang C; Nie Y; Zheng Y; Cho K ACS Appl Mater Interfaces; 2018 Feb; 10(7):6673-6680. PubMed ID: 29363309 [TBL] [Abstract][Full Text] [Related]
25. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. Kim Y ACS Appl Mater Interfaces; 2012 May; 4(5):2329-33. PubMed ID: 22497580 [TBL] [Abstract][Full Text] [Related]
26. Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. Chen J; Deng W; Gao X; Yin S; Yang L; Liu H; Zou G; Hou H; Ji X ACS Nano; 2021 Apr; 15(4):6061-6104. PubMed ID: 33792291 [TBL] [Abstract][Full Text] [Related]
27. Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. Hatsukade T; Schiele A; Hartmann P; Brezesinski T; Janek J ACS Appl Mater Interfaces; 2018 Nov; 10(45):38892-38899. PubMed ID: 30335934 [TBL] [Abstract][Full Text] [Related]
28. Structure and Charge Regulation Strategy Enabling Superior Cyclability for Ni-Rich Layered Cathode Materials. Huang W; Li W; Wang L; Zhu H; Gao M; Zhao H; Zhao J; Shen X; Wang X; Wang Z; Qi C; Xiao W; Yao L; Wang J; Zhuang W; Sun X Small; 2021 Dec; 17(52):e2104282. PubMed ID: 34623019 [TBL] [Abstract][Full Text] [Related]
29. Preparation and Rate Capability of Carbon Coated LiNi Yang C; Zhang X; Huang M; Huang J; Fang Z ACS Appl Mater Interfaces; 2017 Apr; 9(14):12408-12415. PubMed ID: 28221016 [TBL] [Abstract][Full Text] [Related]
30. Degradation Mechanism of Highly Ni-Rich Li[Ni Kim JH; Ryu HH; Kim SJ; Yoon CS; Sun YK ACS Appl Mater Interfaces; 2019 Aug; 11(34):30936-30942. PubMed ID: 31380614 [TBL] [Abstract][Full Text] [Related]
31. Influence of Ni/Mn distributions on the structure and electrochemical properties of Ni-rich cathode materials. Sun Y; Zhang Z; Li H; Yang T; Zhang H; Shi X; Song D; Zhang L Dalton Trans; 2018 Nov; 47(46):16651-16659. PubMed ID: 30426127 [TBL] [Abstract][Full Text] [Related]
32. Modified High-Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithium-Ion Batteries. You Y; Celio H; Li J; Dolocan A; Manthiram A Angew Chem Int Ed Engl; 2018 May; 57(22):6480-6485. PubMed ID: 29601125 [TBL] [Abstract][Full Text] [Related]
33. Addressing the High-Voltage Structural and Electrochemical Instability of Ni-Containing Layered Transition Metal (T Sharma A; Rajkamal A; Kobi S; Kumar BS; Paidi AK; Chatterjee A; Mukhopadhyay A ACS Appl Mater Interfaces; 2021 Jun; 13(22):25836-25849. PubMed ID: 34028254 [TBL] [Abstract][Full Text] [Related]
34. Origin of oxygen-redox and transition metals dissolution in Ni-rich Li Cai C; Zhang D; Zhang Q; Chen K; Hua W; Peng C; Xue D J Chem Phys; 2023 Mar; 158(11):114703. PubMed ID: 36948826 [TBL] [Abstract][Full Text] [Related]
35. Alleviating Structure Collapse of Polycrystalline LiNi Shang M; Ren H; Zhao W; Li Z; Fang J; Chen H; Fan W; Pan F; Zhao Q ACS Nano; 2024 Jul; 18(26):16982-16993. PubMed ID: 38900971 [TBL] [Abstract][Full Text] [Related]
36. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries. Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183 [TBL] [Abstract][Full Text] [Related]
37. Recycling of NCM cathode material from spent lithium-ion batteries via polyvinyl chloride and chlorinated polyvinyl chloride in subcritical water: A comparative study. Nshizirungu T; Rana M; Jo YT; Park JH J Hazard Mater; 2021 Jul; 414():125575. PubMed ID: 34030417 [TBL] [Abstract][Full Text] [Related]
38. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
39. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. Li L; Xu M; Yao Q; Chen Z; Song L; Zhang Z; Gao C; Wang P; Yu Z; Lai Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):30879-30889. PubMed ID: 27805812 [TBL] [Abstract][Full Text] [Related]
40. Leaching process for recovering valuable metals from the LiNi He LP; Sun SY; Song XF; Yu JG Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]