These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30887901)

  • 1. Effect of gender on the biodynamic responses to vibration induced by a whole-body vibration training machine.
    Nawayseh N; Sinan HA; Alteneiji S; Hamdan S
    Proc Inst Mech Eng H; 2019 Mar; 233(3):383-392. PubMed ID: 30887901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apparent mass of the standing human body when using a whole-body vibration training machine: Effect of knee angle and input frequency.
    Nawayseh N; Hamdan S
    J Biomech; 2019 Jan; 82():291-298. PubMed ID: 30466950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of back support conditions on the apparent mass of seated occupants under horizontal vibration.
    Mandapuram SC; Rakheja S; Shiping MA; Demont RG; Boileau PE
    Ind Health; 2005 Jul; 43(3):421-35. PubMed ID: 16100919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of vibration from a vibrating plate to the head of standing people.
    Nawayseh N
    Sports Biomech; 2019 Oct; 18(5):482-500. PubMed ID: 29558238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodynamic responses of the seated human body to single-axis and dual-axis vibration.
    Qiu Y; Griffin MJ
    Ind Health; 2010; 48(5):615-27. PubMed ID: 20953078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apparent mass and seat-to-head transmissibility responses of seated occupants under single and dual axis horizontal vibration.
    Mandapuram S; Rakheja S; Boileau PÉ; Maeda S; Shibata N
    Ind Health; 2010; 48(5):698-714. PubMed ID: 20953086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the seated human body to whole-body vertical vibration: biodynamic responses to sinusoidal and random vibration.
    Zhou Z; Griffin MJ
    Ergonomics; 2014; 57(5):693-713. PubMed ID: 24730687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Absorbed by the Standing Human Body During Whole-Body Vibration Training.
    Nawayseh N; Hamdan S
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 31891372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the seated human body to whole-body vertical vibration: biodynamic responses to mechanical shocks.
    Zhou Z; Griffin MJ
    Ergonomics; 2017 Mar; 60(3):333-346. PubMed ID: 27206993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodynamic Responses to Whole-Body Vibration Training: A Systematic Review.
    Nawayseh N; AlBaiti S
    J Appl Biomech; 2021 Oct; 37(5):494-507. PubMed ID: 34530400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the apparent mass during exposure to whole-body vertical vibration between Japanese subjects and ISO 5982 standard.
    Maeda S; Mansfield NJ
    Ind Health; 2005 Jul; 43(3):436-40. PubMed ID: 16100920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.
    Baig HA; Dorman DB; Bulka BA; Shivers BL; Chancey VC; Winkelstein BA
    J Biomech Eng; 2014 Oct; 136(10):101002. PubMed ID: 25010637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent mass of the seated human body during vertical vibration in the frequency range 2-100 Hz.
    Huang Y; Zhang P; Liang S
    Ergonomics; 2020 Sep; 63(9):1150-1163. PubMed ID: 32401623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of elastic seats on seated body apparent mass responses to vertical whole body vibration.
    Dewangan KN; Rakheja S; Marcotte P; Shahmir A
    Ergonomics; 2015; 58(7):1175-90. PubMed ID: 26062686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of support conditions on vertical whole-body vibration of the seated human body.
    M-Pranesh A; Rakheja S; Demont R
    Ind Health; 2010; 48(5):682-97. PubMed ID: 20953085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gender difference in subjective response to whole-body vibration under standing posture.
    Shibata N; Ishimatsu K; Maeda S
    Int Arch Occup Environ Health; 2012 Feb; 85(2):171-9. PubMed ID: 21667177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.
    Liu C; Qiu Y; Griffin MJ
    J Biomech; 2017 Aug; 61():176-182. PubMed ID: 28780186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.
    Qiu Y; Griffin MJ
    Ind Health; 2012; 50(1):37-51. PubMed ID: 22146145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission of acceleration from a synchronous vibration exercise platform to the head.
    Caryn RC; Hazell TJ; Dickey JP
    Int J Sports Med; 2014 Apr; 35(4):330-8. PubMed ID: 24081617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of the seated human body to whole-body vertical vibration: discomfort caused by sinusoidal vibration.
    Zhou Z; Griffin MJ
    Ergonomics; 2014; 57(5):714-32. PubMed ID: 24730710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.