These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30888011)

  • 1. Melting of nucleobases. Getting the cutting edge of "Walden's Rule".
    Abdelaziz A; Zaitsau DH; Kuratieva NV; Verevkin SP; Schick C
    Phys Chem Chem Phys; 2019 Jun; 21(24):12787-12797. PubMed ID: 30888011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sublimation thermodynamics of nucleobases derived from fast scanning calorimetry.
    Abdelaziz A; Zaitsau DH; Buzyurov AV; Verevkin SP; Schick C
    Phys Chem Chem Phys; 2020 Jan; 22(2):838-853. PubMed ID: 31840715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study.
    Lin Q; Zou X; Zhou G; Liu R; Wu J; Li J; Duan W
    Phys Chem Chem Phys; 2011 Jul; 13(26):12225-30. PubMed ID: 21637870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified nucleobases.
    Matsika S
    Top Curr Chem; 2015; 355():209-43. PubMed ID: 24748343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-covalent interactions: complexes of guanidinium with DNA and RNA nucleobases.
    Blanco F; Kelly B; Sánchez-Sanz G; Trujillo C; Alkorta I; Elguero J; Rozas I
    J Phys Chem B; 2013 Oct; 117(39):11608-16. PubMed ID: 23992551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleobases as supramolecular motifs.
    Sivakova S; Rowan SJ
    Chem Soc Rev; 2005 Jan; 34(1):9-21. PubMed ID: 15643486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculations of pKa's and redox potentials of nucleobases with explicit waters and polarizable continuum solvation.
    Thapa B; Schlegel HB
    J Phys Chem A; 2015 May; 119(21):5134-44. PubMed ID: 25291241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electron affinities of deprotonated adenine, guanine, cytosine, uracil, and thymine.
    Chen EC; Wiley JR; Chen ES
    Nucleosides Nucleotides Nucleic Acids; 2008 May; 27(5):506-24. PubMed ID: 18569789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of DNA nucleobases and nucleosides with graphene.
    Varghese N; Mogera U; Govindaraj A; Das A; Maiti PK; Sood AK; Rao CN
    Chemphyschem; 2009 Jan; 10(1):206-10. PubMed ID: 18814150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of the GSAM approach for the structural investigation of low-lying isomers of molecular clusters from density-functional-theory-based potential energy surfaces: the structures of microhydrated nucleic acid bases.
    Thicoipe S; Carbonniere P; Pouchan C
    J Phys Chem A; 2013 Aug; 117(32):7236-45. PubMed ID: 23577640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electron affinities of the radicals formed by the loss of an aromatic hydrogen atom from adenine, guanine, cytosine, uracil, and thymine.
    Chen ES; Chen EC; Sane N
    Biochem Biophys Res Commun; 1998 May; 246(1):228-30. PubMed ID: 9600097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV).
    Francés-Monerris A; Segarra-Martí J; Merchán M; Roca-Sanjuán D
    J Chem Phys; 2015 Dec; 143(21):215101. PubMed ID: 26646889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study.
    Meyer M; Sühnel J
    J Biomol Struct Dyn; 2003 Feb; 20(4):507-17. PubMed ID: 12529150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.
    Holland JG; Malin JN; Jordan DS; Morales E; Geiger FM
    J Am Chem Soc; 2011 Mar; 133(8):2567-70. PubMed ID: 21291217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited states behavior of nucleobases in solution: insights from computational studies.
    Improta R; Barone V
    Top Curr Chem; 2015; 355():329-57. PubMed ID: 24647839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Condensation of nucleobases at mercury/aqueous solution interface--a structural perspective using hydrogen bonding considerations.
    Harinipriya S; Sangaranarayanan MV
    J Colloid Interface Sci; 2002 Jun; 250(1):201-12. PubMed ID: 16290652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nature of the adsorption of nucleobases on the gold [111] surface.
    Piana S; Bilic A
    J Phys Chem B; 2006 Nov; 110(46):23467-71. PubMed ID: 17107199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS
    J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the interaction of DNA-RNA nucleobases with different ZnO nanomaterials.
    Saha S; Sarkar P
    Phys Chem Chem Phys; 2014 Aug; 16(29):15355-66. PubMed ID: 24942064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of the "piano-stool" [ruthenium(II) (eta6-arene)(en)CL]+ complexes with water and nucleobases; ab initio and DFT study.
    Futera Z; Klenko J; Sponer JE; Sponer J; Burda JV
    J Comput Chem; 2009 Sep; 30(12):1758-70. PubMed ID: 19090568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.