BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 30888170)

  • 1. Fabricating an Acetylcholinesterase Modulated UCNPs-Cu
    Wang P; Li H; Hassan MM; Guo Z; Zhang ZZ; Chen Q
    J Agric Food Chem; 2019 Apr; 67(14):4071-4079. PubMed ID: 30888170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.
    Long Q; Li H; Zhang Y; Yao S
    Biosens Bioelectron; 2015 Jun; 68():168-174. PubMed ID: 25569873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensitive fluorescence assay of organophosphorus pesticides using acetylcholinesterase and copper-catalyzed click chemistry.
    Huang N; Qin Y; Li M; Chen T; Lu M; Zhao J
    Analyst; 2019 May; 144(10):3436-3441. PubMed ID: 31020297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step Facile Synthesis of Nitrogen-Doped Carbon Dots: A Ratiometric Fluorescent Probe for Evaluation of Acetylcholinesterase Activity and Detection of Organophosphorus Pesticides in Tap Water and Food.
    Huang S; Yao J; Chu X; Liu Y; Xiao Q; Zhang Y
    J Agric Food Chem; 2019 Oct; 67(40):11244-11255. PubMed ID: 31532667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system.
    Hou J; Dong G; Tian Z; Lu J; Wang Q; Ai S; Wang M
    Food Chem; 2016 Jul; 202():81-7. PubMed ID: 26920268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholinesterase with mesoporous silica: Covalent immobilization, physiochemical characterization, and its application in food for pesticide detection.
    Palanivelu J; Chidambaram R
    J Cell Biochem; 2019 Jun; 120(6):10777-10786. PubMed ID: 30672607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorometric assay for acetylcholinesterase activity and inhibitor detection based on DNA-templated copper/silver nanoclusters.
    Li W; Li W; Hu Y; Xia Y; Shen Q; Nie Z; Huang Y; Yao S
    Biosens Bioelectron; 2013 Sep; 47():345-9. PubMed ID: 23603132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing platform for pico-molar level detection of ethyl parathion using Au-Ag nanoclusters based enzymatic strategy.
    Sharma D; Wangoo N; Sharma RK
    Talanta; 2021 Jan; 221():121267. PubMed ID: 33076046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor.
    Hu T; Xu J; Ye Y; Han Y; Li X; Wang Z; Sun D; Zhou Y; Ni Z
    Biosens Bioelectron; 2019 Jul; 136():112-117. PubMed ID: 31054518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An amplified fluorescence polarization assay for sensitive sensing of organophosphorus pesticides via MnO
    Qin Y; Ye G; Liang H; Li M; Zhao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 269():120759. PubMed ID: 34968836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode.
    Gan N; Yang X; Xie D; Wu Y; Wen W
    Sensors (Basel); 2010; 10(1):625-38. PubMed ID: 22315558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium-copper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides.
    Song D; Li Y; Lu X; Sun M; Liu H; Yu G; Gao F
    Anal Chim Acta; 2017 Aug; 982():168-175. PubMed ID: 28734356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-enzymes-mediated fluorescent assay for sensitive determination of organophosphorus pesticides based on the quenching of upconversion nanoparticles by Fe
    Lin X; Yu Q; Yang W; He C; Zhou Y; Duan N; Wu S
    Food Chem; 2021 May; 345():128809. PubMed ID: 33338834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry.
    Fu G; Chen W; Yue X; Jiang X
    Talanta; 2013 Jan; 103():110-5. PubMed ID: 23200365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An acetylcholinesterase biosensor based on doping Au nanorod@SiO
    Cui HF; Zhang TT; Lv QY; Song X; Zhai XJ; Wang GG
    Biosens Bioelectron; 2019 Sep; 141():111452. PubMed ID: 31252259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulating gold nanoclusters into metal-organic frameworks to boost luminescence for sensitive detection of copper ions and organophosphorus pesticides.
    Wei D; Li M; Wang Y; Zhu N; Hu X; Zhao B; Zhang Z; Yin D
    J Hazard Mater; 2023 Jan; 441():129890. PubMed ID: 36084467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity.
    Chang J; Li H; Hou T; Li F
    Biosens Bioelectron; 2016 Dec; 86():971-977. PubMed ID: 27498323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food.
    Xu S; Li M; Li X; Jiang Y; Yu L; Zhao Y; Wen L; Xue Q
    Anal Bioanal Chem; 2023 Jan; 415(1):203-210. PubMed ID: 36333614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Displaying of acetylcholinesterase mutants on surface of yeast for ultra-trace fluorescence detection of organophosphate pesticides with gold nanoclusters.
    Liang B; Han L
    Biosens Bioelectron; 2020 Jan; 148():111825. PubMed ID: 31677527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.
    Fang A; Chen H; Li H; Liu M; Zhang Y; Yao S
    Biosens Bioelectron; 2017 Jan; 87():545-551. PubMed ID: 27611473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.