These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30888236)

  • 21. Evaluation of Coupling Efficiency in Round Window Vibroplasty With a New Handheld Probe.
    Schwarz D; Pazen D; Gostian AO; Lüers JC; Hüttenbrink KB
    Otol Neurotol; 2019 Jan; 40(1):e40-e47. PubMed ID: 30531640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Infrasound transmission in the human ear: Implications for acoustic and vestibular responses of the normal and dehiscent inner ear.
    Raufer S; Masud SF; Nakajima HH
    J Acoust Soc Am; 2018 Jul; 144(1):332. PubMed ID: 30075646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vibrations in the human middle ear.
    Rusinek R; Szymański M; Warmiński J; Zadrozniak M; Morshed K
    Med Sci Monit; 2011 Dec; 17(12):BR372-6. PubMed ID: 22129895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment.
    Schraven SP; Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Rak K; Radeloff A; Hagen R; Gummer AW
    Hear Res; 2016 Oct; 340():179-184. PubMed ID: 27037037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of stimulation sites on the performance of electromagnetic middle ear implant: A finite element analysis.
    Liu H; Wang W; Zhao Y; Yang J; Yang S; Huang X; Liu W
    Comput Biol Med; 2020 Sep; 124():103918. PubMed ID: 32758680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanics of type IV tympanoplasty: experimental findings and surgical implications.
    Merchant SN; Ravicz ME; Rosowski JJ
    Ann Otol Rhinol Laryngol; 1997 Jan; 106(1):49-60. PubMed ID: 9006362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Vibrant Soundbridge placement against the round window membrane in a human cadaveric temporal bone model.
    Pennings RJ; Ho A; Brown J; van Wijhe RG; Bance M
    Otol Neurotol; 2010 Aug; 31(6):998-1003. PubMed ID: 20601915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Management of the incus body in ossiculoplasty.
    Capra GG; Ge X; Balough BJ; Shah AN; Turner S; Mullin DP; Pfannenstiel TJ
    Otolaryngol Head Neck Surg; 2013 Mar; 148(3):482-7. PubMed ID: 23302148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of auditory responses determined by acoustic stimulation and by mechanical round window stimulation at equivalent stapes velocities.
    Lee J; Seong K; Lee SH; Lee KY; Cho JH
    Hear Res; 2014 Aug; 314():65-71. PubMed ID: 24768763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation.
    Lupo JE; Koka K; Holland NJ; Jenkins HA; Tollin DJ
    Otol Neurotol; 2009 Dec; 30(8):1215-24. PubMed ID: 19779388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of increased stiffness of the incudostapedial joint on the transmission of air-conducted sound by the human middle ear.
    Alian W; Majdalawieh O; Kiefte M; Ejnell H; Bance M
    Otol Neurotol; 2013 Oct; 34(8):1503-9. PubMed ID: 23928510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of the incudo-malleolar joint to middle-ear sound transmission.
    Gerig R; Ihrle S; Röösli C; Dalbert A; Dobrev I; Pfiffner F; Eiber A; Huber AM; Sim JH
    Hear Res; 2015 Sep; 327():218-26. PubMed ID: 26209186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological assessment of active middle ear implant coupling to the round window in Chinchilla lanigera.
    Lupo JE; Koka K; Hyde BJ; Jenkins HA; Tollin DJ
    Otolaryngol Head Neck Surg; 2011 Oct; 145(4):641-7. PubMed ID: 21593462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Objective assessment of stapedotomy surgery from round window motion measurement.
    Sim JH; Chatzimichalis M; Röösli C; Laske RD; Huber AM
    Ear Hear; 2012; 33(5):e24-31. PubMed ID: 22699658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research on coupling effects of actuator and round window membrane on reverse stimulation of human cochlea.
    Xue L; Liu H; Yang J; Liu S; Zhao Y; Huang X
    Proc Inst Mech Eng H; 2021 Apr; 235(4):447-458. PubMed ID: 33427056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Round window membrane motion before and after stapedotomy surgery - an experimental study.
    Kwacz M; Mrowka M; Wysocki J
    Acta Bioeng Biomech; 2011; 13(3):27-33. PubMed ID: 22098054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.