BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30888247)

  • 1. Polyhydroxyalkanoate production using waste vegetable oil and filtered digestate liquor of chicken manure.
    Altun M
    Prep Biochem Biotechnol; 2019; 49(5):493-500. PubMed ID: 30888247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors.
    Passanha P; Esteves SR; Kedia G; Dinsdale RM; Guwy AJ
    Bioresour Technol; 2013 Nov; 147():345-352. PubMed ID: 23999264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of
    Kökpınar Ö; Altun M
    Prep Biochem Biotechnol; 2023; 53(5):532-541. PubMed ID: 36007876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator.
    Arumugam A; Senthamizhan SG; Ponnusami V; Sudalai S
    Int J Biol Macromol; 2018 Jun; 112():598-607. PubMed ID: 29408394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate.
    Obruca S; Marova I; Snajdar O; Mravcova L; Svoboda Z
    Biotechnol Lett; 2010 Dec; 32(12):1925-32. PubMed ID: 20814716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate.
    Nie H; Jacobi HF; Strach K; Xu C; Zhou H; Liebetrau J
    Bioresour Technol; 2015 Feb; 178():238-246. PubMed ID: 25266688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates.
    Morais C; Freitas F; Cruz MV; Paiva A; Dionísio M; Reis MA
    Int J Biol Macromol; 2014 Nov; 71():68-73. PubMed ID: 24794198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates.
    Obruca S; Petrik S; Benesova P; Svoboda Z; Eremka L; Marova I
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5883-90. PubMed ID: 24652066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.
    Riedel SL; Jahns S; Koenig S; Bock MC; Brigham CJ; Bader J; Stahl U
    J Biotechnol; 2015 Nov; 214():119-27. PubMed ID: 26428087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils.
    Volova T; Sapozhnikova K; Zhila N
    Int J Biol Macromol; 2020 Dec; 164():121-130. PubMed ID: 32679327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations.
    Riedel SL; Bader J; Brigham CJ; Budde CF; Yusof ZA; Rha C; Sinskey AJ
    Biotechnol Bioeng; 2012 Jan; 109(1):74-83. PubMed ID: 21809332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545.
    Berezina N
    N Biotechnol; 2013 Jan; 30(2):192-5. PubMed ID: 22634022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator.
    Passanha P; Kedia G; Dinsdale RM; Guwy AJ; Esteves SR
    Bioresour Technol; 2014 Jul; 163():287-94. PubMed ID: 24835740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed-culture polyhydroxyalkanoate production from olive oil mill pomace.
    Waller JL; Green PG; Loge FJ
    Bioresour Technol; 2012 Sep; 120():285-9. PubMed ID: 22784593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of polyhydroxyalkanoate (PHA) by Ralstonia eutropha JMP 134 with volatile fatty acids from palm oil mill effluent as precursors.
    Setiadi T; Aznury M; Trianto A; Pancoro A
    Water Sci Technol; 2015; 72(11):1889-95. PubMed ID: 26606081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.
    Estevez MM; Sapci Z; Linjordet R; Schnürer A; Morken J
    J Environ Manage; 2014 Apr; 136():9-15. PubMed ID: 24534902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyhydroxyalkanoates production from effluent of hydrogen fermentation process by Cupriavidus sp. KKU38.
    Saraphirom P; Reungsang A; Plangklang P
    Environ Technol; 2013; 34(1-4):477-83. PubMed ID: 23530362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology.
    Coats ER; Watson BS; Brinkman CK
    Water Res; 2016 Dec; 106():26-40. PubMed ID: 27697682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.