These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30888357)

  • 1. Induced charge electro-osmotic particle separation.
    Chen X; Ren Y; Hou L; Feng X; Jiang T; Jiang H
    Nanoscale; 2019 Mar; 11(13):6410-6421. PubMed ID: 30888357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation.
    Chen X; Ren Y; Liu W; Feng X; Jia Y; Tao Y; Jiang H
    Anal Chem; 2017 Sep; 89(17):9583-9592. PubMed ID: 28783330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microparticle separation using asymmetrical induced-charge electro-osmotic vortices on an arc-edge-based floating electrode.
    Chen X; Ren Y; Hou L; Feng X; Jiang T; Jiang H
    Analyst; 2019 Aug; 144(17):5150-5163. PubMed ID: 31342972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment and Selection of Particles through Parallel Induced-Charge Electro-osmotic Streaming for Detection of Low-Abundance Nanoparticles and Targeted Microalgae.
    Chen X; Liu S; Hu XG; Liu T; Shen M; Peng Y; Hu S; Zhao Y
    Anal Chem; 2023 Aug; 95(31):11714-11722. PubMed ID: 37486806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis.
    Ren Y; Liu J; Liu W; Lang Q; Tao Y; Hu Q; Hou L; Jiang H
    Lab Chip; 2016 Aug; 16(15):2803-12. PubMed ID: 27354159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Particle Movement and High-Resolution Separation of Microalgal Cells via Induced-Charge Electroosmotic Advective Spiral Flow.
    Chen X; Ren Y; Jiang T; Hou L; Jiang H
    Anal Chem; 2021 Jan; 93(3):1667-1676. PubMed ID: 33381971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel particle separation method based on induced-charge electro-osmotic flow and polarizability of dielectric particles.
    Zhang F; Li D
    Electrophoresis; 2014 Oct; 35(20):2922-9. PubMed ID: 25043290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Experimental Study of 3D Electrode-Facilitated Particle Traffic Flow-Focusing Driven by Induced-Charge Electroosmosis.
    Jiang T; Tao Y; Jiang H; Liu W; Hu Y; Tang D
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30781666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of induced-charge electro-osmotic flow in a microchannel embedded with polarizable dielectric blocks.
    Zhao C; Yang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046312. PubMed ID: 19905441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of droplets with adjustable chemical concentrations based on fixed potential induced-charge electro-osmosis.
    Wu Y; Hu B; Ma X; Zhang H; Li W; Wang Y; Wang S
    Lab Chip; 2022 Jan; 22(2):403-412. PubMed ID: 34950939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable hydrodynamic chromatography of microparticles localized in short microchannels.
    Jellema LJ; Markesteijn AP; Westerweel J; Verpoorte E
    Anal Chem; 2010 May; 82(10):4027-35. PubMed ID: 20423105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced-charge electroosmotic trapping of particles.
    Ren Y; Liu W; Jia Y; Tao Y; Shao J; Ding Y; Jiang H
    Lab Chip; 2015 May; 15(10):2181-91. PubMed ID: 25828535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2016 Dec; 88(23):11791-11798. PubMed ID: 27806196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonuniform electro-osmotic flow on charged strips and its use in particle trapping.
    Liu SJ; Hwang SH; Wei HH
    Langmuir; 2008 Dec; 24(23):13776-89. PubMed ID: 18956894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced charge electro-osmotic concentration gradient generator.
    Jain M; Yeung A; Nandakumar K
    Biomicrofluidics; 2010 Mar; 4(1):14110. PubMed ID: 20644679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis.
    Ren Y; Liu X; Liu W; Tao Y; Jia Y; Hou L; Li W; Jiang H
    Electrophoresis; 2018 Feb; 39(4):597-607. PubMed ID: 29115688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures.
    Sugioka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056321. PubMed ID: 21728661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.