Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30888358)

  • 1. Microfluidic device for expedited tumor growth towards drug evaluation.
    Uhl CG; Liu Y
    Lab Chip; 2019 Apr; 19(8):1458-1470. PubMed ID: 30888358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models.
    Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ
    Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids.
    Shirure VS; Bi Y; Curtis MB; Lezia A; Goedegebuure MM; Goedegebuure SP; Aft R; Fields RC; George SC
    Lab Chip; 2018 Dec; 18(23):3687-3702. PubMed ID: 30393802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release.
    Sabhachandani P; Sarkar S; Mckenney S; Ravi D; Evens AM; Konry T
    J Control Release; 2019 Feb; 295():21-30. PubMed ID: 30550941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development.
    Shang M; Soon RH; Lim CT; Khoo BL; Han J
    Lab Chip; 2019 Jan; 19(3):369-386. PubMed ID: 30644496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening.
    Yu L; Ni C; Grist SM; Bayly C; Cheung KC
    Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells.
    Wertheim L; Shapira A; Amir RJ; Dvir T
    Nanotechnology; 2018 Apr; 29(13):13LT01. PubMed ID: 29384490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.
    Ong LJY; Chong LH; Jin L; Singh PK; Lee PS; Yu H; Ananthanarayanan A; Leo HL; Toh YC
    Biotechnol Bioeng; 2017 Oct; 114(10):2360-2370. PubMed ID: 28542705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a Microfluidic Device for Culture and Drug Toxicity Testing of 3D Cells.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():235-241. PubMed ID: 31124121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Microfluidic Chip-Based Automated System for Whole-Course Monitoring the Drug Responses of Organoids.
    Zhang K; Xi J; Wang Y; Xue J; Li B; Huang Z; Zheng Z; Liang N; Wei Z
    Anal Chem; 2024 Jun; 96(24):10092-10101. PubMed ID: 38833634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in microfluidic technologies for cell-to-cell interaction studies.
    Rothbauer M; Zirath H; Ertl P
    Lab Chip; 2018 Jan; 18(2):249-270. PubMed ID: 29143053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model.
    Jeong K; Yu YJ; You JY; Rhee WJ; Kim JA
    Lab Chip; 2020 Feb; 20(3):548-557. PubMed ID: 31942592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics 3D gel-island chip for single cell isolation and lineage-dependent drug responses study.
    Zhang Z; Chen YC; Cheng YH; Luan Y; Yoon E
    Lab Chip; 2016 Jul; 16(13):2504-2512. PubMed ID: 27270563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening.
    Chen MC; Gupta M; Cheung KC
    Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy.
    Pradhan S; Smith AM; Garson CJ; Hassani I; Seeto WJ; Pant K; Arnold RD; Prabhakarpandian B; Lipke EA
    Sci Rep; 2018 Feb; 8(1):3171. PubMed ID: 29453454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IFlowPlate-A Customized 384-Well Plate for the Culture of Perfusable Vascularized Colon Organoids.
    Rajasekar S; Lin DSY; Abdul L; Liu A; Sotra A; Zhang F; Zhang B
    Adv Mater; 2020 Nov; 32(46):e2002974. PubMed ID: 33000879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing.
    Yan X; Zhou L; Wu Z; Wang X; Chen X; Yang F; Guo Y; Wu M; Chen Y; Li W; Wang J; Du Y
    Biomaterials; 2019 Apr; 198():167-179. PubMed ID: 29807624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.