These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30888374)

  • 21. Three-Dimensionally Reinforced Freestanding Cathode for High-Energy Room-Temperature Sodium-Sulfur Batteries.
    Ghosh A; Kumar A; Roy A; Panda MR; Kar M; MacFarlane DR; Mitra S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14101-14109. PubMed ID: 30919631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na-S batteries.
    Tabuyo-Martínez M; Wicklein B; Aranda P
    Beilstein J Nanotechnol; 2021; 12():995-1020. PubMed ID: 34621612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Room-Temperature Sodium-Sulfur Batteries.
    Liu Y; Ma S; Rosebrock M; Rusch P; Barnscheidt Y; Wu C; Nan P; Bettels F; Lin Z; Li T; Ge B; Bigall NC; Pfnür H; Ding F; Zhang C; Zhang L
    Adv Sci (Weinh); 2022 Apr; 9(11):e2105544. PubMed ID: 35132807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfur-Based Electrodes that Function via Multielectron Reactions for Room-Temperature Sodium-Ion Storage.
    Wang YX; Lai WH; Wang YX; Chou SL; Ai X; Yang H; Cao Y
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18324-18337. PubMed ID: 31087486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-based electrocatalysts for room-temperature Na-S batteries.
    Huang XL; Dou SX; Wang ZM
    Mater Horiz; 2021 Nov; 8(11):2870-2885. PubMed ID: 34569582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte.
    Hu L; Lu Y; Zhang T; Huang T; Zhu Y; Qian Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):13813-13818. PubMed ID: 28388027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries.
    Yang CP; Yin YX; Ye H; Jiang KC; Zhang J; Guo YG
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8789-95. PubMed ID: 24764111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic Insights into Interactions of Polysulfides at VS
    Jayan R; Islam MM
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35848-35855. PubMed ID: 34284574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Encapsulation of Small S
    Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances of Catalytic Effects in Cathode Materials for Room-Temperature Sodium-Sulfur Batteries.
    Li S; Han Y; Ge P; Yang Y
    Chempluschem; 2021 Sep; 86(10):1461-1471. PubMed ID: 34533897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Critical Review on Room-Temperature Sodium-Sulfur Batteries: From Research Advances to Practical Perspectives.
    Zhao L; Tao Y; Zhang Y; Lei Y; Lai WH; Chou S; Liu HK; Dou SX; Wang YX
    Adv Mater; 2024 Jun; 36(25):e2402337. PubMed ID: 38458611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance.
    Xu X; Zhou D; Qin X; Lin K; Kang F; Li B; Shanmukaraj D; Rojo T; Armand M; Wang G
    Nat Commun; 2018 Sep; 9(1):3870. PubMed ID: 30250202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies for Polysulfide Immobilization in Sulfur Cathodes for Room-Temperature Sodium-Sulfur Batteries.
    Zhou J; Xu S; Yang Y
    Small; 2021 Aug; 17(32):e2100057. PubMed ID: 34110676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte.
    Hu L; Lu Y; Li X; Liang J; Huang T; Zhu Y; Qian Y
    Small; 2017 Mar; 13(11):. PubMed ID: 28060452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical and spatial dual-confinement engineering for stable Na-S batteries with approximately 100% capacity retention.
    Zhang Y; Guo X; Yang Q; Shao Y; Du Y; Qi J; Zhao M; Shang Z; Hao Y; Tang Y; Li Y; Zhang R; Wang B; Qiu J
    Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2314408120. PubMed ID: 37983506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-energy room-temperature sodium-sulfur battery.
    Xin S; Yin YX; Guo YG; Wan LJ
    Adv Mater; 2014 Feb; 26(8):1261-5. PubMed ID: 24338949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Grown S Nanosheets on Cu Foam: An Ultrahigh Electroactive Cathode for Room-Temperature Na-S Batteries.
    Zhang BW; Liu YD; Wang YX; Zhang L; Chen MZ; Lai WH; Chou SL; Liu HK; Dou SX
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24446-24450. PubMed ID: 28699731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.