These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30888374)

  • 61. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Self-Assembling Hollow Carbon Nanobeads into Double-Shell Microspheres as a Hierarchical Sulfur Host for Sustainable Room-Temperature Sodium-Sulfur Batteries.
    Zhang L; Zhang B; Dou Y; Wang Y; Al-Mamun M; Hu X; Liu H
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20422-20428. PubMed ID: 29762005
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Refining Interfaces between Electrolyte and Both Electrodes with Carbon Nanotube Paper for High-Loading Lithium-Sulfur Batteries.
    Peng Y; Wen Z; Liu C; Zeng J; Wang Y; Zhao J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6986-6994. PubMed ID: 30644725
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sustainable Sulfur-Carbon Hybrids for Efficient Sulfur Redox Conversions in Nanoconfined Spaces.
    Senokos E; Au H; Eren EO; Horner T; Song Z; Tarakina NV; Yılmaz EB; Vasileiadis A; Zschiesche H; Antonietti M; Giusto P
    Small; 2024 Oct; ():e2407300. PubMed ID: 39396369
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions.
    Borchardt L; Oschatz M; Kaskel S
    Chemistry; 2016 May; 22(22):7324-51. PubMed ID: 27001631
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biomass-derived, activated carbon-sulfur composite cathode with a bifunctional interlayer of functionalized carbon nanotubes for lithium-sulfur cells.
    Manoj M; Muhamed Ashraf C; Jasna M; Anilkumar KM; Jinisha B; Pradeep VS; Jayalekshmi S
    J Colloid Interface Sci; 2019 Feb; 535():287-299. PubMed ID: 30316115
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries.
    Li Y; Cai Q; Wang L; Li Q; Peng X; Gao B; Huo K; Chu PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23784-92. PubMed ID: 27552961
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An ultrastable anode for long-life room-temperature sodium-ion batteries.
    Yu H; Ren Y; Xiao D; Guo S; Zhu Y; Qian Y; Gu L; Zhou H
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):8963-9. PubMed ID: 24962822
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High-Performance All-Inorganic Solid-State Sodium-Sulfur Battery.
    Yue J; Han F; Fan X; Zhu X; Ma Z; Yang J; Wang C
    ACS Nano; 2017 May; 11(5):4885-4891. PubMed ID: 28459546
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery.
    Zheng D; Yang XQ; Qu D
    ChemSusChem; 2016 Sep; 9(17):2348-50. PubMed ID: 27535337
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium-Sulfur Batteries with High Areal Capacities.
    Pan H; Cheng Z; Zhong H; Wang R; Li X
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8032-8039. PubMed ID: 30702847
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stable sodium-sulfur electrochemistry enabled by phosphorus-based complexation.
    Wang C; Zhang Y; Zhang Y; Luo J; Hu X; Matios E; Crane J; Xu R; Wang H; Li W
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34857631
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synergistically boosting the anchoring effect and catalytic activity of MXenes as bifunctional electrocatalysts for sodium-sulfur batteries by single-atom catalyst engineering.
    Li N; Zhan Y; Wu H; Fan J; Jia J
    Nanoscale; 2023 Feb; 15(6):2747-2755. PubMed ID: 36655846
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ambient temperature sodium-sulfur batteries.
    Manthiram A; Yu X
    Small; 2015 May; 11(18):2108-14. PubMed ID: 25565554
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Na
    Treacher JC; Wood SM; Islam MS; Kendrick E
    Phys Chem Chem Phys; 2016 Dec; 18(48):32744-32752. PubMed ID: 27878176
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The Sodium-Oxygen/Carbon Dioxide Electrochemical Cell.
    Xu S; Wei S; Wang H; Abruña HD; Archer LA
    ChemSusChem; 2016 Jul; 9(13):1600-6. PubMed ID: 27225026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.