These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30888530)
41. The Duero Diatom Index (DDI) for river water quality assessment in NW Spain: design and validation. Álvarez-Blanco I; Blanco S; Cejudo-Figueiras C; Bécares E Environ Monit Assess; 2013 Jan; 185(1):969-81. PubMed ID: 22461151 [TBL] [Abstract][Full Text] [Related]
42. Benthic Diatom Communities in Korean Estuaries: Species Appearances in Relation to Environmental Variables. Kim HK; Cho IH; Hwang EA; Kim YJ; Kim BH Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31357556 [TBL] [Abstract][Full Text] [Related]
43. Live diatoms as indicators of urban stormwater runoff. Gillett ND; Oudsema ME; Steinman AD Environ Monit Assess; 2017 Jan; 189(1):37. PubMed ID: 28013476 [TBL] [Abstract][Full Text] [Related]
44. Distribution of diatoms in relation to land use and pH in blackwater coastal plain streams. Zampella RA; Laidig KJ; Lowe RL Environ Manage; 2007 Mar; 39(3):369-84. PubMed ID: 17219257 [TBL] [Abstract][Full Text] [Related]
45. Application of nitrogen and phosphorus criteria for streams in agricultural landscapes. Chambers PA; Benoy GA; Brua RB; Culp JM Water Sci Technol; 2011; 64(11):2185-91. PubMed ID: 22156121 [TBL] [Abstract][Full Text] [Related]
46. Nitrogen as the main driver of benthic diatom composition and diversity in oligotrophic coastal systems. Kafouris S; Smeti E; Spatharis S; Tsirtsis G; Economou-Amilli A; Danielidis DB Sci Total Environ; 2019 Dec; 694():133773. PubMed ID: 31756832 [TBL] [Abstract][Full Text] [Related]
47. Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Wojciechowska E; Pietrzak S; Matej-Łukowicz K; Nawrot N; Zima P; Kalinowska D; Wielgat P; Obarska-Pempkowiak H; Gajewska M; Dembska G; Jasiński P; Pazikowska-Sapota G; Galer-Tatarowicz K; Dzierzbicka-Głowacka L J Environ Manage; 2019 Dec; 252():109637. PubMed ID: 31600684 [TBL] [Abstract][Full Text] [Related]
48. Accounting for regional variation in both natural environment and human disturbance to improve performance of multimetric indices of lotic benthic diatoms. Tang T; Stevenson RJ; Infante DM Sci Total Environ; 2016 Oct; 568():1124-1134. PubMed ID: 27134128 [TBL] [Abstract][Full Text] [Related]
49. Epilithic diatom assemblages and their relationships with environmental variables in the Nilüfer Stream Basin, Bursa, Turkey. Karacaoğlu D; Dalkıran N Environ Monit Assess; 2017 May; 189(5):227. PubMed ID: 28432510 [TBL] [Abstract][Full Text] [Related]
50. Microphytobenthic biomass, species composition and environmental gradients in the mangrove intertidal region of the Andaman Archipelago, India. Balasubramaniam J; Prasath D; Jayaraj KA Environ Monit Assess; 2017 May; 189(5):231. PubMed ID: 28439805 [TBL] [Abstract][Full Text] [Related]
51. Export of non-point source suspended sediment, nitrogen, and phosphorus from sloping highland agricultural fields in the East Asian monsoon region. Reza A; Eum J; Jung S; Choi Y; Owen JS; Kim B Environ Monit Assess; 2016 Dec; 188(12):692. PubMed ID: 27888424 [TBL] [Abstract][Full Text] [Related]
52. Variation in stream diatom communities in relation to water quality and catchment variables in a boreal, urbanized region. Teittinen A; Taka M; Ruth O; Soininen J Sci Total Environ; 2015 Oct; 530-531():279-289. PubMed ID: 26047862 [TBL] [Abstract][Full Text] [Related]
53. Diatom assemblages from different environments of the Acoculco Caldera associated to hydrothermal and anthropogenic activity. Israde-Alcántara I; García-Zárate MA; González-Acevedo ZI Environ Monit Assess; 2023 Mar; 195(4):501. PubMed ID: 36949177 [TBL] [Abstract][Full Text] [Related]
54. Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK. Ockenden MC; Deasy C; Quinton JN; Surridge B; Stoate C J Environ Manage; 2014 Mar; 135():54-62. PubMed ID: 24509365 [TBL] [Abstract][Full Text] [Related]
55. Eutrophication of agricultural streams: defining nutrient concentrations to protect ecological condition. Chambers PA; Vis C; Brua RB; Guy M; Culp JM; Benoy GA Water Sci Technol; 2008; 58(11):2203-10. PubMed ID: 19092197 [TBL] [Abstract][Full Text] [Related]
56. Limno-ecological assessment of Aras River surface waters in Turkey: application of diatom indices. Çelekli A; Kayhan S; Lekesiz Ö; Toudjani AA; Çetin T Environ Sci Pollut Res Int; 2019 Mar; 26(8):8028-8038. PubMed ID: 30684177 [TBL] [Abstract][Full Text] [Related]
57. Mesoscale survey of western and northwestern Irish lakes--spatial and aestival patterns in trophic status and phytoplankton community structure. Touzet N J Environ Manage; 2011 Oct; 92(10):2844-54. PubMed ID: 21764507 [TBL] [Abstract][Full Text] [Related]
58. [Relationship Between Agricultural Land and Water Quality of Inflow River in Erhai Lake Basin]. Pang Y; Xiang S; Chu ZS; Xue LQ; Ye BB Huan Jing Ke Xue; 2015 Nov; 36(11):4005-12. PubMed ID: 26910984 [TBL] [Abstract][Full Text] [Related]
59. Spatial Response of Epilithic Diatom Communities to Downstream Nutrient Increases. Schuch M; Oliveira MA; Lobo EA Water Environ Res; 2015 Jun; 87(6):547-58. PubMed ID: 26459823 [TBL] [Abstract][Full Text] [Related]
60. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Jarvie HP; Neal C; Withers PJ Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]