These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30888733)

  • 1. Regulation of position effect variegation at pericentric heterochromatin by Drosophila Keap1-Nrf2 xenobiotic response factors.
    Carlson J; Swisse T; Smith C; Deng H
    Genesis; 2019 Apr; 57(4):e23290. PubMed ID: 30888733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction with B-type lamin reveals the function of Drosophila Keap1 xenobiotic response factor in nuclear architecture.
    Carlson J; Neidviecky E; Cook I; Cross B; Deng H
    Mol Biol Rep; 2024 Apr; 51(1):556. PubMed ID: 38642177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila Keap1 xenobiotic response factor regulates developmental transcription through binding to chromatin.
    Carlson J; Price L; Cook I; Deng H
    Dev Biol; 2022 Jan; 481():139-147. PubMed ID: 34662537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Drosophila metamorphosis by xenobiotic response regulators.
    Deng H; Kerppola TK
    PLoS Genet; 2013; 9(2):e1003263. PubMed ID: 23408904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple roles of Nrf2-Keap1 signaling: regulation of development and xenobiotic response using distinct mechanisms.
    Deng H
    Fly (Austin); 2014; 8(1):7-12. PubMed ID: 24406335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of the Drosophila dKeap1-CncC interaction on chromatin illumines cooperative, xenobiotic-specific gene activation.
    Deng H; Kerppola TK
    Development; 2014 Aug; 141(16):3277-88. PubMed ID: 25063457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in genes cnc or dKeap1 modulate stress resistance and metabolic processes in Drosophila melanogaster.
    Bayliak MM; Demianchuk OI; Gospodaryov DV; Abrat OB; Lylyk MP; Storey KB; Lushchak VI
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Oct; 248():110746. PubMed ID: 32579905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability.
    Huang H; Yu Z; Zhang S; Liang X; Chen J; Li C; Ma J; Jiao R
    J Cell Sci; 2010 Aug; 123(Pt 16):2853-61. PubMed ID: 20663913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keap1-Independent Regulation of Nrf2 Activity by Protein Acetylation and a BET Bromodomain Protein.
    Chatterjee N; Tian M; Spirohn K; Boutros M; Bohmann D
    PLoS Genet; 2016 May; 12(5):e1006072. PubMed ID: 27233051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific Nrf2 signaling protects against methylmercury toxicity in Drosophila neuromuscular development.
    Gunderson JT; Peppriell AE; Vorojeikina D; Rand MD
    Arch Toxicol; 2020 Dec; 94(12):4007-4022. PubMed ID: 32816092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genomic silencing of position-effect variegation in Drosophila melanogaster: interaction between the heterochromatin-associated proteins Su(var)3-7 and HP1.
    Delattre M; Spierer A; Tonka CH; Spierer P
    J Cell Sci; 2000 Dec; 113 Pt 23():4253-61. PubMed ID: 11069770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling.
    Chew LY; Zhang H; He J; Yu F
    Cell Rep; 2021 Aug; 36(5):109466. PubMed ID: 34348164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of xenobiotic detoxification in Drosophila.
    Misra JR; Horner MA; Lam G; Thummel CS
    Genes Dev; 2011 Sep; 25(17):1796-806. PubMed ID: 21896655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone modification and the control of heterochromatic gene silencing in Drosophila.
    Ebert A; Lein S; Schotta G; Reuter G
    Chromosome Res; 2006; 14(4):377-92. PubMed ID: 16821134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal depletion of Piwi, a component of the RNAi system, impacts heterochromatin formation in Drosophila.
    Gu T; Elgin SC
    PLoS Genet; 2013; 9(9):e1003780. PubMed ID: 24068954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A balance between euchromatic (JIL-1) and heterochromatic [SU(var)2-5 and SU(var)3-9] factors regulates position-effect variegation in Drosophila.
    Wang C; Girton J; Johansen J; Johansen KM
    Genetics; 2011 Jul; 188(3):745-8. PubMed ID: 21515582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of genetic background and cell lineage on the level and pattern of gene expression in position effect variegation.
    Wang SH; Elgin SCR
    Epigenetics Chromatin; 2019 Nov; 12(1):70. PubMed ID: 31722719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila.
    Elgin SC; Reuter G
    Cold Spring Harb Perspect Biol; 2013 Aug; 5(8):a017780. PubMed ID: 23906716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effect of agar oligosaccharide on male Drosophila melanogaster suffering from oxidative stress via intestinal microflora activating the Keap1-Nrf2 signaling pathway.
    Dai X; Zhang Q; Zhang G; Ma C; Zhang R
    Carbohydr Polym; 2023 Aug; 313():120878. PubMed ID: 37182968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing.
    Schotta G; Ebert A; Krauss V; Fischer A; Hoffmann J; Rea S; Jenuwein T; Dorn R; Reuter G
    EMBO J; 2002 Mar; 21(5):1121-31. PubMed ID: 11867540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.